scholarly journals Dietary Quercetin Supplementation Attenuates Diarrhea and Intestinal Damage by Regulating Gut Microbiota in Weanling Piglets

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Baoyang Xu ◽  
Wenxia Qin ◽  
Yunzheng Xu ◽  
Wenbo Yang ◽  
Yuwen Chen ◽  
...  

Antioxidant polyphenols from plants are potential dietary supplementation to alleviate early weaning-induced intestinal disorders in piglets. Recent evidences showed polyphenol quercetin could reshape gut microbiota when it functioned as anti-inflammation or antioxidation agents in rodent models. However, the effect of dietary quercetin supplementation on intestinal disorders and gut microbiota of weanling piglets, along with the role of gut microbiota in this effect, both remain unclear. Here, we determined the quercetin’s effect on attenuating diarrhea, intestinal damage, and redox imbalance, as well as the role of gut microbiota by transferring the quercetin-treated fecal microbiota to the recipient piglets. The results showed that dietary quercetin supplementation decreased piglets’ fecal scores improved intestinal damage by increasing tight junction protein occludin, villus height, and villus height/crypt depth ratio but decreased crypt depth and intestinal epithelial apoptosis (TUNEL staining). Quercetin also increased antioxidant capacity indices, including total antioxidant capacity, catalase, and glutathione/oxidized glutathione disulfide but decreased oxidative metabolite malondialdehyde in the jejunum tissue. Fecal microbiota transplantation (FMT) from quercetin-treated piglets had comparable effects on improving intestinal damage and antioxidative capacity than dietary quercetin supplementation. Further analysis of gut microbiota using 16S rDNA sequencing showed that dietary quercetin supplementation or FMT shifted the structure and increased the diversity of gut microbiota. Especially, anaerobic trait and carbohydrate metabolism functions of gut microbiota were enriched after dietary quercetin supplementation and FMT, which may owe to the increased antioxidative capacity of intestine. Quercetin increased the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum, Clostridium celatum, and Prevotella copri but decreased the relative abundances of Proteobacteria, Lactobacillus coleohominis, and Ruminococcus bromii. Besides, quercetin-shifted bacteria and carbohydrate metabolites short chain fatty acids were significantly related to the indices of antioxidant capacity and intestinal integrity. Overall, dietary quercetin supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant capacity and regulating gut microbial structure and metabolism in piglets.

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4219
Author(s):  
Na Liu ◽  
Likang Qin ◽  
Xiafen Lu ◽  
Yuxuan Zhao ◽  
Song Miao

The study aimed to explore the effects of fortified fermented rice-acid on the antioxidant capacity of mouse serum and the gut microbiota. Hair characteristics, body mass index, intestinal villus height, intestinal crypt depth, serum antioxidant capacity, and gut microbiota of mice were first measured and the correlation between the antioxidant capacity of mouse serum and the gut microbiota was then explored. The mice in the lactic acid bacteria group (L-group), the mixed bacteria group (LY-group), and the rice soup group (R-group) kept their weight well and had better digestion. The mice in the L-group had the better hair quality (dense), but the hair quality in the R-group and the yeast group (Y-group) was relatively poor (sparse). In addition, the inoculation of Lactobacillus paracasei H4-11 (L. paracasei H4-11) and Kluyveromyces marxianus L1-1 (K. marxianus L1-1) increased the villus height/crypt depth of the mice (3.043 ± 0.406) compared to the non-inoculation group (R-group) (2.258 ± 0.248). The inoculation of L. paracasei H4-11 and K. marxianus L1-1 in fermented rice-acid enhanced the blood antioxidant capacity of mouse serum (glutathione 29.503 ± 6.604 umol/L, malonaldehyde 0.687 ± 0.125 mmol/L, catalase 15.644 ± 4.618 U/mL, superoxide dismutase 2.292 ± 0.201 U/mL). In the gut microbiota of L-group and LY-group, beneficial microorganisms (Lactobacillus and Blautia) increased, but harmful microorganisms (Candidatus Arthromitus and Erysipelotrichales) decreased. L. paracasei H4-11 and K. marxianus L1-1 might have a certain synergistic effect on the improvement in antibacterial function since they reduced harmful microorganisms in the gut microbiota of mice. The study provides the basis for the development of fortified fermented rice-acid products for regulating the gut microbiota and improving the antioxidant capacity.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2557
Author(s):  
Yu-Chieh Cheng ◽  
Je-Ruei Liu

Obesity is closely associated with various metabolic disorders, including leptin resistance, which is characterized by high circulating leptin levels. Probiotics can decrease circulating leptin levels by alteration of the gut microbiota. Thus, they may have anti-obesogenic effects. In this study, the effects of administration of a probiotic bacterium, Lactobacillus rhamnosus GG (LGG), on gut microbiota and modulation of leptin resistance were evaluated in mice. Male Balb/C mice aged 7 weeks were fed either a normal diet (ND), high-fat diet (HFD), HFD supplemented with low-dose LGG (108 CFU/mouse/day), or HFD supplemented with high-dose LGG (1010 CFU/mouse/day) for 10 weeks. Significantly increased body weight, epididymal fat weight, and decreased leptin responsiveness to exogenous leptin treatment and ratio of villus height to crypt depth were observed in the HFD-fed mice compared to the ND-fed mice. Moreover, a remarkable increase in the proportion of Proteobacteria and ratio of Firmicutes/Bacteroidetes in the fecal microbiota were also observed in the HFD-fed mice. Supplementation of HFD with high-dose LGG restored exogenous leptin responsiveness, increased the ratio of villus height to crypt depth, and decreased the proportion of Proteobacteria in fecal microbiota. These findings suggest that LGG supplementation might alleviate leptin resistance caused by an HFD through the improvement of the digestive health of the host.


2019 ◽  
Author(s):  
Xiaodan Wang ◽  
Zhilong Tian ◽  
Yue Zhao ◽  
Wenming Zhang ◽  
Zhanbin Wang ◽  
...  

Abstract This study was conducted to investigate the effects of dietary supplementation with a mixture of Bacillus on the intestinal health of weaned piglets. We randomly assigned 120 piglets to three groups; a control group (basal diet), a probiotics group (supplemented with 4 × 109 CFU/g Bacillus licheniformis-B. subtilis mixture; BLS mix), and an antibiotics group (supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc oxide). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, intestine and digesta samples were collected to determine the intestinal morphology, gut microbiota and metabolites, and the expression of genes related to gut health. The results showed that the BLS mix decreased the jejunum crypt depth, increased the ileum villus height, and increased the jejunum and ileum villus height to crypt depth ratio. The BLS mix also increased the expression levels of E-cadherin and Occludin in the colon and pro-inflammatory cytokines and TLR4 in ileum and colon. The BLS mix also increased Simpson’s diversity index in the gut microbiota and the relative abundances of o_Bacteroidetes and f_Ruminococcaceae, but it decreased the relative abundances of Blautia, and Clostridium. Collectively, these findings suggested that dietary BLS mix supplementation efficaciously promotes intestinal health through the modulation of gut microbiota in weaned piglets.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2554
Author(s):  
Marc Micó-Carnero ◽  
Araní Casillas-Ramírez ◽  
Albert Caballeria-Casals ◽  
Carlos Rojano-Alfonso ◽  
Alfredo Sánchez-González ◽  
...  

Herein, we investigate whether: (1) the administration of glucose or a lipid emulsion is useful in liver transplantation (LT) using steatotic (induced genetically or nutritionally) or non-steatotic livers from donors after brain death (DBDs); and (2) any such benefits are due to reductions in intestinal damage and consequently to gut microbiota preservation. In recipients from DBDs, we show increased hepatic damage and failure in the maintenance of ATP, glycogen, phospholipid and growth factor (HGF, IGF1 and VEGFA) levels, compared to recipients from non-DBDs. In recipients of non-steatotic grafts from DBDs, the administration of glucose or lipids did not protect against hepatic damage. This was associated with unchanged ATP, glycogen, phospholipid and growth factor levels. However, the administration of lipids in steatotic grafts from DBDs protected against damage and ATP and glycogen drop and increased phospholipid levels. This was associated with increases in growth factors. In all recipients from DBDs, intestinal inflammation and damage (evaluated by LPS, vascular permeability, mucosal damage, TLR4, TNF, IL1, IL-10, MPO, MDA and edema formation) was not shown. In such cases, potential changes in gut microbiota would not be relevant since neither inflammation nor damage was evidenced in the intestine following LT in any of the groups evaluated. In conclusion, lipid treatment is the preferable nutritional support to protect against hepatic damage in steatotic LT from DBDs; the benefits were independent of alterations in the recipient intestine.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


2021 ◽  
Author(s):  
Yiyangzi Ma ◽  
Ruru Guo ◽  
Yiduo Sun ◽  
Xin Li ◽  
Lun He ◽  
...  

Background: The etiology of systemic lupus erythematosus (SLE) is multifactorial. Recently, growing evidence suggests that the microbiota plays a role in SLE, yet whether gut microbiota participates in the development of SLE remains largely unknown. To investigate this issue, we carried out 16s rDNA sequencing analyses in a cohort of 18 female un-treated active SLE patients and 7 female healthy controls, and performed fecal microbiota transplantation from patients and healthy controls to germ-free mice. Results: Compared to the healthy controls, we found no significant different microbial diversity but some significantly different species in SLE patients including Turicibacter genus and other 5 species. Fecal transfer from SLE patients to germ free (GF) C57BL/6 mice caused GF mice to develop a series of lupus-like phenotyptic features, which including an increased serum autoimmune antibodies, and imbalanced cytokines, altered distribution of immune cells in mucosal and peripheral immune response, and upregulated expression of genes related to SLE in recipient mice that received SLE fecal microbiota transplantation (FMT). Moreover, the metabolism of histidine was significantly altered in GF mice treated with SLE patient feces, as compared to those which received healthy fecal transplants. Conclusions: Overall, our results describe a causal role of aberrant gut microbiota in contributing to the pathogenesis of SLE. The interplay of gut microbial and histidine metabolism may be one of the mechanisms intertwined with autoimmune activation in SLE.


2021 ◽  
Vol 8 ◽  
Author(s):  
Teketay Wassie ◽  
Zhuang Lu ◽  
Xinyi Duan ◽  
Chunyan Xie ◽  
Kefyalew Gebeyew ◽  
...  

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.


Author(s):  
Giuseppe Lo Sasso ◽  
Lusine Khachatryan ◽  
Athanasios Kondylis ◽  
James N D Battey ◽  
Nicolas Sierro ◽  
...  

Abstract Background Several studies have highlighted the role of host–microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). Methods Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. Results Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. Conclusions Our analyses highlighted how IBD-related dysbiotic microbiota—which are generally mainly linked to SCFA imbalance—may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.


2019 ◽  
Vol 20 (18) ◽  
pp. 4584 ◽  
Author(s):  
Romain Villéger ◽  
Amélie Lopès ◽  
Guillaume Carrier ◽  
Julie Veziant ◽  
Elisabeth Billard ◽  
...  

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


Sign in / Sign up

Export Citation Format

Share Document