scholarly journals Immune-Enhancing Effect of Submerged Culture of Ceriporia lacerata Mycelia on Cyclophosphamide-Induced Immunosuppressed Mice and the Underlying Mechanisms in Macrophages

2022 ◽  
Vol 23 (2) ◽  
pp. 597
Author(s):  
Yong Pil Hwang ◽  
Gi Ho Lee ◽  
Thi Hoa Pham ◽  
Mi Yeon Kim ◽  
Chae Yeon Kim ◽  
...  

The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including β-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1β, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1β, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.

2020 ◽  
Vol 8 (8) ◽  
pp. 1175
Author(s):  
Sun Woo Jin ◽  
Gi Ho Lee ◽  
Min Jung Jang ◽  
Gyeong Eun Hong ◽  
Jae Young Kim ◽  
...  

Recently, Lactococcus lactis subsp. lactis has been reported to have immunostimulating properties in an immunosuppressed-animal model. However, the immunological activities of Lactococcus lactis and the molecular mechanisms remain unclear. In this report, we evaluated the immunostimulating activity and associated mechanisms of Lactococcus lactis subsp. lactis GCWB1176 (GCWB1176) in macrophages and cyclophosphamide (CTX)-induced immunosuppressed mice. In a series of safety tests, GCWB1176 was found to have a negative response to hemolysis, as well as susceptibility to antibiotics. Administration of GCWB1176 elevated natural killer (NK) cell activities; concanavalin A-induced T cell proliferation; and serum levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-10 and IL-12 in CTX-induced immunosuppressed mice. In RAW264.7 macrophages, treatment with GCWB1176 induced phagocytic activity and increased the production of nitric oxide (NO) and expression of inducible NO synthase. Simultaneously, GCWB1176 increased the production of TNF-α, IFN-γ, IL-1β, IL-10 and IL-12 from mouse splenocytes and RAW264.7 cells. In addition, GCWB1176 significantly increased the transcriptional activities of NF-κB and iNOS. Taken together, GCWB1176 improved immune function through the activation of macrophages and NK cells. These findings suggest that dietary supplementation of GCWB1176 may be used to enhance immunity.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5733
Author(s):  
Feng Liu ◽  
Lijia Zhang ◽  
Xi Feng ◽  
Salam A. Ibrahim ◽  
Wen Huang ◽  
...  

The effects of immunomodulatory activity of two types of carboxymethyl pachymaran (CMP-1 and CMP-2) on cyclophosphamide (CTX)-induced mice were investigated. Both CMP-1 and CMP-2 were found to restore the splenomegaly and alleviate the spleen lesions and the mRNA expressions of TLR4, MyD88, p65 and NF-κB in spleen were also increased. CMP-1 and CMP-2 could enhance the immunity by increasing the levels of TNF-α, IL-2, IL-6, IFN-γ, Ig-A and Ig-G in serum. In addition, CMP-1 could increase the relative abundance of Bacteroidetes and reduce the relative richness of Firmicutes at the phylum level. CMP-1 and CMP-2 could reduce the relative abundance Erysipelatoclostridum at the genus level. CMP-1 and CMP-2 might enhance the immune function of immunosuppression mice by regulating the gene expression in the TLR4/NF-κB signaling pathway and changing the composition and abundance of the intestinal microbiota. The results suggested that CMP-1 and CMP-2 would be as potential immunomodulatory agents in functional foods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cai Zhang ◽  
Xinran Wang ◽  
Chunguo Wang ◽  
Cheng He ◽  
Quantao Ma ◽  
...  

Background: Acute lung injury (ALI) is characterized by dysfunction of the alveolar epithelial membrane caused by acute inflammation and tissue injury. Qingwenzhike (QWZK) prescription has been demonstrated to be effective against respiratory viral infections in clinical practices, including coronavirus disease 2019 (COVID-19) infection. So far, the chemical compositions, protective effects on ALI, and possible anti-inflammatory mechanisms remain unknown.Methods: In this study, the compositions of QWZK were determined via the linear ion trap/electrostatic field orbital trap tandem high-resolution mass spectrometry (UHPLC-LTQ-Orbitrap MS). To test the protective effects of QWZK on ALI, an ALI model induced by lipopolysaccharide (LPS) in rats was used. The effects of QWZK on the LPS-induced ALI were evaluated by pathological changes and the number and classification of white blood cell (WBC) in bronchoalveolar lavage fluid (BALF). To investigate the possible underlying mechanisms, the contents of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP-1), interleukin-1β (IL-1β), interleukin-18 (IL-18), and immunoregulatory-related factors interferon-γ (IFN-γ) were detected by ELISA. Furthermore, the expression of Toll-like receptor 4 (TLR4), p-IKKα/β, IKKα, IKKβ, p-IκBα, IκBα, p-NF-κB, nuclear factor-κB (NF-κB), NOD-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, pro-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), and β-actin were tested by Western blot.Results: A total of 99 compounds were identified in QWZK, including 33 flavonoids, 23 phenolic acids, 3 alkaloids, 3 coumarins, 20 triterpenoids, 5 anthraquinones, and 12 others. ALI rats induced by LPS exhibited significant increase in neutrophile, significant decrease in lymphocyte, and evidently thicker alveolar wall than control animals. QWZK reversed the changes in WBC count and alveolar wall to normal level on the model of ALI induced by LPS. ELISA results revealed that QWZK significantly reduced the overexpression of proinflammatory factors IL-6, TNF-α, MCP-1, IL-1β, IL-18, and IFN-γ induced by LPS. Western blot results demonstrated that QWZK significantly downregulated the overexpression of TLR4, p-IKKα/β, p-IκBα, p-NF-κB, NLRP3, cleaved caspase-1, and ASC induced by LPS, which suggested that QWZK inhibited TLR4/NF-κB signaling pathway and NLRP3 inflammasomes.Conclusions: The chemical compositions of QWZK were first identified. It was demonstrated that QWZK showed protective effects on ALI induced by LPS. The possible underlying mechanisms of QWZK on ALI induced by LPS was via inhibiting TLR4/NF-kB signaling pathway and NLRP3 inflammasome activation. This work suggested that QWZK is a potential therapeutic candidate for the treatments of ALI and pulmonary inflammation.


2021 ◽  
Vol 12 (1) ◽  
pp. 105
Author(s):  
Ha-Rim Kim ◽  
Ye-Seul Kim ◽  
Dong-Ryung Lee ◽  
Bong-Keun Choi ◽  
Kang-Beom Kwon ◽  
...  

Echinacea purpurea (EP) has been widely used to treat upper respiratory infections, influenza, and the common cold. It can also exert various pharmacological activities, such as anti-inflammatory and anti-allergic effects. However, the potential of EP to modulate immune reactions remains unclear. Therefore, we evaluated the immunostimulatory effects of EP in cyclophosphamide (CP)-induced immunosuppressed mice. In this study, EP extract (12.5, 25, or 50 mg/kg) was orally administered to cyclophosphamide-induced immunosuppressed BALB/c mice. Then, indexes of immune organs, including the spleen and thymus, were recorded. Splenocyte proliferation and natural killer (NK) cell activities were measured by lactate dehydrogenase assay. Subsets of T cells, such as CD4+ and CD8+, were measured by flow cytometry, and immuno-cytokines, such as interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, were measured by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. The immunosuppressed mice showed decreased thymus and spleen indexes and immune cell activities. Treatment of EP elevated the indexes of immune organs, splenocyte proliferation, and NK cell activities in CP-induced immunosuppressed mice. Simultaneously, administration of EP reversed the CP-induced decrease in T-lymphocyte subsets (CD4+ and CD8+) and immunocytokines (IL-2, TNF-α, and IFN-γ). Taken together, these findings suggest that EP could be used to enhance health and immunity in immunosuppressed conditions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sajid Ur Rahman ◽  
Haiyan Gong ◽  
Rongsheng Mi ◽  
Yan Huang ◽  
Xiangan Han ◽  
...  

Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p < 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p < 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p < 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p < 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.


2019 ◽  
Author(s):  
Ju-Hyun An ◽  
Woo-Jin Song ◽  
Qiang Li ◽  
Min-Ok Ryu ◽  
A-Ryung Nam ◽  
...  

AbstractMesenchymal stem/stromal cell (MSC)-derived extracellular vesicles (EV) have been reported to be beneficial against dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms have not been fully elucidated. We hypothesize that the tumor necrosis factor-α-stimulated gene/protein 6 (TSG-6) in EVs is a key factor influencing the alleviation of colitis symptoms. DSS-induced colitis mice (C57BL/6, male, n = 6-8/group) were intraperitoneally administered EVs (100 ug/mice) on day 1, 3, and 5; colon tissues were collected on day 10 for histopathological, qRT-PCR, western blot, and immunofluorescence analyses. In mice injected with EV, inflammation was alleviated. Indeed, EVs regulated the levels of pro- and anti-inflammatory cytokines, such as TNF-α, IL-1β, IFN-γ, IL-6, and IL-10 in inflamed colons. However, when injected with TSG-6 depleted EV, the degree of inflammatory relief was reduced. Furthermore, TSG-6 in EVs plays a key role in increasing regulatory T cells (Tregs) in the colon. In conclusion, this study shows that TSG-6 in EVs is a major factor in the relief of DSS-induced colitis, by increasing the number of Tregs in the colon.


2020 ◽  
Author(s):  
Mehrdad Nasrollahzadeh Sabet ◽  
Sajjad Biglari ◽  
Emran Esmaeilzadeh

Abstract Background Multiple sclerosis is a common auto-immuno-inflammatory diseases of the central nervous system in adults. There are several underlying mechanisms for pathogenesis of the disease, including inflammation, oligodendrocyte apoptosis, and oxidative stress. Methods We have investigated the mechanism of Shikonin action in C57BL/6 experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Results Our results revealed that EAE induction significantly increased the extent of demyelination in the corpus callosum tissues of the animals, while treatment of the mice with Shikonin, significantly decreased the extent of demyelination. Real-time PCR based analyzing the brain samples from the EAE mice, revealed a significant enhancement in the expression level of TNF-α , IFN-γ and Bax genes as well as a reduction in the expression level of TGF-β and Bcl2. Shikonin treatment significantly reduced the expression level of TNF-α , IFN-γ and Bax. On the other hand, the expression levels of TGF-β and Bcl2 as well as the Glutathione peroxidase-1 (GPX-1) enzyme were significantly increased following Shikonin treatment. Conclusion This study emphasizes the immune-modulatory, anti-apoptotic, and anti-oxitive effects of Shikonin, which may have an important healing influence on the severity of EAE.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 447 ◽  
Author(s):  
Hee Joon Yoo ◽  
Dong-Ju You ◽  
Kwang-Won Lee

Immunomodulation involves two mechanisms, immunostimulation and immunosuppression. It is a complex mechanism that regulates the pathophysiology and pathogenesis of various diseases affecting the immune system. Immunomodulators can be used as immunostimulators to reduce the side effects of drugs that induce immunosuppression. In this study, we characterized the chemical composition of high molecular weight fucoidan (HMWF) and low molecular weight fucoidan and compared their functions as natural killer (NK) cell-derived immunostimulators in vitro. We also tested the effectiveness of HMWF, which has a relatively high function in vitro, as an immunostimulator in immunosuppressed animal models. In these models, HWMF significantly restored NK cell cytotoxicity and granzyme B release to the control group level. In addition, the expression of interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α also increased in the spleen. This study suggests that HMWF acts as an effective immunostimulant under immunosuppressive conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yi Cheng ◽  
Lu Liu ◽  
Simei Mo ◽  
Jianxiong Gao ◽  
Hongjian Zhang ◽  
...  

Cyclophosphamide is a commonly used anticancer drug, and immunosuppression is one of the most common side effects. How to recover the immunological function is important for cyclophosphamide-treated patients. In the present study, Phellodendri Cortex polysaccharides (CPP) could enhance the proliferation of mouse spleen lymphocytes in vitro. The immunoregulatory function of CPP was then investigated in cyclophosphamide-induced immunosuppressed mice. In CPP-treated groups, mice were orally treated with CPP at doses of 1, 0.5, and 0.25 g/kg bodyweight from 1 to 11 d, respectively. The cyclophosphamide was administrated in CPP and cyclophosphamide groups from 12 to 14 d. In the cyclophosphamide and normal control groups, the mice received equal volume of saline from 1 to 14 d. The results showed that CPP (1 g/kg) could significantly increase the bodyweight of mice, even during cyclophosphamide treatment. The organ coefficients of the spleen and thymus were recovered by CPP treatment. CPP upregulated the contents of cytokines (IL-2, IL-6, IFN-γ, and TNF-α) in serum, which were downregulated by cyclophosphamide. The mRNA levels of these cytokines were also elevated by CPP treatment in the spleen. Cyclophosphamide upregulated the expressions of NF-κB p65, TLR4, and MyD88, suggesting that the NF-κB signaling pathway was activated by cyclophosphamide. After CPP treatment, it was recovered to normal level. These results indicated that CPP alleviated the cyclophosphamide-induced immunosuppression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Lu ◽  
Haiming Chen ◽  
Junhong Zhang ◽  
Bin Tang ◽  
Hongyu Zhang ◽  
...  

Psoriasis is a chronic proliferative skin disorder characterised by abnormal epidermal differentiation. The Fuzhenghefuzhiyang (FZHFZY) formula created by Chuanjian Lu, a master of Chinese medicine in dermatology, has been external used in the Guangdong Provincial Hospital of Chinese Medicine for the treatment of psoriasis, but its mechanisms of action against psoriasis remain poorly understood. This study involved an exploration of the effects of FZHFZY on epidermal differentiation and its underlying mechanisms in interleukin (IL)-17A/IL-22/interferon (IFN)-γ/tumour necrosis factor (TNF)-α–stimulated HaCaT cells and in a mouse model of imiquimod (IMQ)-induced psoriasis. Cell viability was assessed by MTT assay. Epidermal differentiation was detected by reverse-transcription polymerase chain reaction and western blotting. Histological evaluation of the skin tissue was performed via haematoxylin and eosin staining, and the Akt/mTORC1/S6K1 pathway was analysed by western blotting. FZHFZY inhibited proliferation and improved epidermal differentiation in IL-17A/IL-22/IFN-γ/TNF-α–induced HaCaT cells. FZHFZY ameliorated symptoms of psoriasis, regulated epidermal differentiation and inhibited phosphorylation of the Akt/mTORC1/S6K1 pathway in the skin of mice with imiquimod-induced psoriasis. Our results suggest that FZHFZY may exhibit therapeutic action against psoriasis by regulating epidermal differentiation via inhibition of the Akt/mTORC1/S6K1 pathway.


Sign in / Sign up

Export Citation Format

Share Document