scholarly journals Light and Temperature Shape the Phenylpropanoid Profile of Azolla filiculoides Fronds

2021 ◽  
Vol 12 ◽  
Author(s):  
Alma Costarelli ◽  
Sara Cannavò ◽  
Martina Cerri ◽  
Roberto Maria Pellegrino ◽  
Lara Reale ◽  
...  

Azolla is a genus of floating freshwater ferns. By their high growth and N2 fixation rates, Azolla species have been exploited for centuries by populations of South-east Asia as biofertilizers in rice paddies. The use of Azolla species as a sustainable plant material for diverse applications, such as feeding, biofuel production, and bioremediation, has encountered a growing interest over the last few years. However, high levels of feed deterrent flavonoids in their fronds have discouraged the use of these ferns as a sustainable protein source for animal consumption. Additionally, information on how and to what extent environmental determinants affect the accumulation of secondary metabolites in these organisms remains poorly understood. Moving from these considerations, here, we investigated by an untargeted metabolomics approach the profiles of phenylpropanoid compounds in the fronds of Azolla filiculoides sampled under control and pigment-inducing stress conditions. In parallel, we assayed the expression of essential structural genes of the phenylpropanoid pathway by quantitative RT-PCR. This study provides novel information concerning A. filiculoides phenylpropanoid compounds and their temporal profiling in response to environmental stimuli. In particular, we show that besides the already known 3-deoxyanthocyanidins, anthocyanidins, and proanthocyanidins, this fern can accumulate additional secondary metabolites of outstanding importance, such as chemoattractants, defense compounds, and reactive oxygen species (ROS) scavengers, and crucial as dietary components for humans, such as dihydrochalcones, stilbenes, isoflavones, and phlobaphenes. The findings of this study open an opportunity for future research studies to unveil the interplay between genetic and environmental determinants underlying the elicitation of the secondary metabolites in ferns and exploit these organisms as sustainable sources of beneficial metabolites for human health.

Author(s):  
Subbiah Latha ◽  
Palanisamy Selvamani ◽  
Thangavelu Prabha

: Natural products have a unique place in the healthcare industry. The genus Commiphora emerged as a potential medicinal with huge benefits as evidenced through its use in various traditional and modern systems of medicine. Therefore, we aimed to prepare a concise review on the pharmacological activities and the indigenous uses of various plant species belonging to the genus Commiphora along with the structural information of various active botanical ingredients present in these plants based on the published literatures and scientific reports. To collect the various published literatures on Commiphora in various journals; to study and classify the available information on the pharmacological uses and chemical constituents; and to present the gathered information as a precise review to serve as a potential reference for future research. Pharmacological and phytochemical data on Commiphora plant species were collected from various journals, books, reference materials, websites including scientific databases, etc for compilation. This review article describes the various pharmacological properties of plants of Commiphora species viz., Anti-arthritic and anti-inflammatory, Anti-atherogenic, Antibacterial, Anti-coagulant, Anti-dicrocoeliasis, Anti-epileptic, Anti-fascioliasis, Anti-fungal, Anti-heterophyidiasis, Anti-hyper cholesterolemic, Anti-hyperlipidemic, Anti-hypothyroidism, Anti-obesity, Anti-osteoarthritic, Anti-osteoclastogenesis, Anti-oxidant, Anti-parasitic, Anti-pyretic, Anti-schistosomiasis, Anti-septic, Anti-thrombotic, Anti-ulcer, Cardioprotective, COX enzyme inhibitory, Cytotoxic /Anti-carcinogenic/Anti-cancer, DNA cleavage, Hypotensive, Inhibits lipid peroxidation, Inhibits NO and NO synthase production, Insecticidal, Local anesthetic, Molluscicidal, Smooth muscle relaxant, Tick repellent activities along with toxicity studies. Furthermore, the review also included various secondary metabolites isolated from various species of Commiphora genus along with their chemical structures serve as a ready resource for researchers. We conclude that the plant species belonging to the genus Commiphora possesses abundant pharmacological properties with a huge treasure of diverse secondary metabolites within themselves. This review indicates the necessity of further in-depth research, pre-clinical and clinical studies with Commiphora genus which may help to detect the unidentified potential of the Commiphora plant species.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3227
Author(s):  
Yuanwei Liu ◽  
Kishneth Palaniveloo ◽  
Siti Aisyah Alias ◽  
Jaya Seelan Sathiya Seelan

Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 133 ◽  
Author(s):  
Annika Jagels ◽  
Viktoria Lindemann ◽  
Sebastian Ulrich ◽  
Christoph Gottschalk ◽  
Benedikt Cramer ◽  
...  

The genus Stachybotrys produces a broad diversity of secondary metabolites, including macrocyclic trichothecenes, atranones, and phenylspirodrimanes. Although the class of the phenylspirodrimanes is the major one and consists of a multitude of metabolites bearing various structural modifications, few investigations have been carried out. Thus, the presented study deals with the quantitative determination of several secondary metabolites produced by distinct Stachybotrys species for comparison of their metabolite profiles. For that purpose, 15 of the primarily produced secondary metabolites were isolated from fungal cultures and structurally characterized in order to be used as analytical standards for the development of an LC-MS/MS multimethod. The developed method was applied to the analysis of micro-scale extracts from 5 different Stachybotrys strains, which were cultured on different media. In that process, spontaneous dialdehyde/lactone isomerization was observed for some of the isolated secondary metabolites, and novel stachybotrychromenes were quantitatively investigated for the first time. The metabolite profiles of Stachybotrys species are considerably influenced by time of growth and substrate availability, as well as the individual biosynthetic potential of the respective species. Regarding the reported adverse effects associated with Stachybotrys growth in building environments, combinatory effects of the investigated secondary metabolites should be addressed and the role of the phenylspirodrimanes re-evaluated in future research.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


2020 ◽  
Vol 25 (50) ◽  
pp. 425-449 ◽  
Author(s):  
Lalita A. Manrai ◽  
Ajay K. Manrai ◽  
Stefanie Friedeborn

Purpose The purpose of this paper is to provide a comprehensive review of the literature and develop a model of the determinants, indicators and effects of destination competitiveness (DC), as well as several propositions. Design/methodology/approach This study thoroughly reviewed extant literature to develop a conceptual model and propositions. Findings Two key findings are listed below. First, 12 different environmental factors are identified and 12 propositions are developed linking these environmental factors to DC. Second, a new indicator of DC is developed, namely, Tourism Attractions-Basics-Context (TABC) model. The TABC model is simple and directly taps into the benefits tourists seek in a destination. Research limitations/implications Directions for future research are discussed in detail in the paper. Practical implications Managerial implications are discussed in detail in the paper. Originality/value The extant research on the topic of DC has been rather fragmented and incomplete in scope. The research presented in this paper addresses these limitations.


2019 ◽  
Vol 54 (1) ◽  
pp. 96-111
Author(s):  
Guilherme Fowler A. Monteiro

Purpose This paper aims to conduct an extensive review and advances a framework for the literature of high-growth firms (HGFs) and scale-ups. Design/methodology/approach This paper takes the form of a literature review. Findings The author makes three specific contributions. First, he presents a broad review of high growth in firms, shedding light on the different levels of analysis. Second, he advances a characterization of scale-up companies to enable a better basis for discussion. Finally, he identifies gaps in the existing literature and suggest paths for future research. Originality/value The interest in HGFs and those referred to as scale-ups has increased considerably in recent years. Despite this trend, existing studies still have conceptual divergences and a gap separating theoretical inputs from the actual experiences of entrepreneurs.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 119-120
Author(s):  
Xingen Lei

Abstract A major mission of the animal industry is to help protect global food security with little or no impacts on climate and environment. In fact, the global food security depends on a sustainable protein production and supply. Currently, there is a direct competition between feed and food protein need. As animal feeds use 70–80% of the produced soybean, alternative proteins are required to sustain the industry. This presentation will report research findings from three large consortium projects in exploring the dual application of microalgae as a new generation of feedstock for biofuel production and high-quality feed protein supply. A comprehensive review will be provided on effects of supplemental full- or de-fatted microalgal biomass in diets for broiler chickens, laying hens, pigs, and fish on their production performance, nutrient metabolism and molecular responses, and health values of their products. Discussions will be given on practical concerns over the production cost related to soybean meal, the production volume/scale for a constant supply, and the biosafety and acceptance as a regular ingredient. Future research will be proposed to synchronize the nutritional, health, and sustainability potential of microalgae as a viable feed protein source.


Agrobacterium rhizogenes induces hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection, when cultured in hormone free medium, show high growth rate and genetic stability. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Several elicitation methods can be used to further enhance the production and accumulation of secondary metabolites. Thus, hairy root culture offer promise for high production and productivity of valuable secondary metabolites in many plants. Hairy roots can also produce recombinant proteins from transgenic roots, and thereby hold immense potential for pharmaceutical industry. Hairy root cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites, and for phytoremediation due to their abundant neoplastic root proliferation property. Various applications of hairy root cultures and potential problems associated with them are discussed in this chapter.


2007 ◽  
Vol 55 (5) ◽  
pp. 367-369
Author(s):  
F. Jüttner

Over more than four decades odour research in the aquatic sciences has increasingly focused on cyanobacteria and the common odour-causing compounds, geosmin and 2-methylisoborneol. Success in future research requires a long-term perspective. Key areas for investigation are secondary metabolites and cyanobacteria, regulatory mechanisms for geosmin and other compounds' synthesis; understanding their spatial and temporal distribution (particularly relating to the food web in a habitat); and molecular mechanisms for liberation of geosmin by microorganisms.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Alan López-Rosales ◽  
Katia Ancona-Canché ◽  
Juan Chavarria-Hernandez ◽  
Felipe Barahona-Pérez ◽  
Tanit Toledano-Thompson ◽  
...  

Marine microalgae are a promising feedstock for biofuel production given their high growth rates and biomass production together with cost reductions due to the use of seawater for culture preparation. However, different microalgae species produce different families of compounds. Some compounds could be used directly as fuels, while others require thermochemical processing to obtain quality biofuels. This work focuses on the characterization of three marine microalgae strains native in Mexico and reported for the first time. Ultrastructure and phylogenetic analysis, suggested that they belong to Nannochloropsis sp. (NSRE-1 and NSRE-2) and Nannochloris sp. (NRRE-1). The composition of their lipid fractions included hydrocarbons, triacylglycerides (TAGs), free fatty acids (FFAs) and terpenes. Based on theoretical estimations from TAG and FFA composition, the potential biodiesels were found to comply with six of the seven estimated properties (ASTM D6751 and EN 14214). On the other hand, hydrocarbons and terpenes synthesized by the strains have outstanding potential as precursors for the production of other renewable fuels, mainly green diesel and bio-jet fuel, which are “drop-in” fuels with quality properties similar to fossil fuels. The validity of this theoretical analysis was demonstrated for the oxygenates of strain NSRE-2, which were experimentally hydrodeoxygenated, obtaining a high-quality renewable diesel as the reaction product.


Sign in / Sign up

Export Citation Format

Share Document