scholarly journals Influence of the chirality of carbon nanodots on their interaction with proteins and cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huijie Yan ◽  
Michele Cacioppo ◽  
Saad Megahed ◽  
Francesca Arcudi ◽  
Luka Đorđević ◽  
...  

AbstractCarbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Imran Din ◽  
Aneela Rani

Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods.


Author(s):  
Chun-Yue Weng ◽  
Mo-Han Zhu ◽  
Ke-Lei Dai ◽  
Zhe-Yan Mi ◽  
Yuan-Shan Wang ◽  
...  

Acarbose is an effective anti-diabetic drug to treat type 2 diabetes mellitus (T2DM), a chronic degenerative metabolic disease caused by insulin resistance. The beneficial effects of acarbose on blood sugar control in T2DM patients have been confirmed by many studies. However, the effect of acarbose on patient kidney has yet to be fully elucidated. In this study, we report in detail the gene expression cascade shift, pathway and module enrichment, and interrelation network in acarbose-treated Rattus norvegicus kidneys based on the in-depth analysis of the GSE59913 microarray dataset. The significantly differentially expressed genes (DEGs) in the kidneys of acarbose-treated rats were initially screened out by comparative analysis. The enriched pathways for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further identified. The protein-protein interaction (PPI) analysis for DEGs was achieved through the STRING database mining. Pathway interrelation and hub genes for enriched pathways were further examined to uncover key biological effects of acarbose. Results revealed 44 significantly up-regulated genes and 86 significantly down-regulated genes (130 significant differential genes in total) in acarbose-treated rat kidneys. Lipid metabolism pathways were considerably improved by acarbose, and the physical conditions in chronic kidney disease (CKD) patients were improved possibly through the increase of the level of high-density lipoprotein (HDL) by lecithin-cholesterol acyl-transferase (LCAT). These findings suggested that acarbose may serve as an ideal drug for CKD patients, since it not only protects the kidney, but also may relieve the complications caused by CKD.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 212 ◽  
Author(s):  
Nadia Garino ◽  
Tania Limongi ◽  
Bianca Dumontel ◽  
Marta Canta ◽  
Luisa Racca ◽  
...  

Herein we report a novel, easy, fast and reliable microwave-assisted synthesis procedure for the preparation of colloidal zinc oxide nanocrystals (ZnO NCs) optimized for biological applications. ZnO NCs are also prepared by a conventional solvo-thermal approach and the properties of the two families of NCs are compared and discussed. All of the NCs are fully characterized in terms of morphological analysis, crystalline structure, chemical composition and optical properties, both as pristine nanomaterials or after amino-propyl group functionalization. Compared to the conventional approach, the novel microwave-derived ZnO NCs demonstrate outstanding colloidal stability in ethanol and water with long shelf-life. Furthermore, together with their more uniform size, shape and chemical surface properties, this long-term colloidal stability also contributes to the highly reproducible data in terms of biocompatibility. Actually, a significantly different biological behavior of the microwave-synthesized ZnO NCs is reported with respect to NCs prepared by the conventional synthesis procedure. In particular, consistent cytotoxicity and highly reproducible cell uptake toward KB cancer cells are measured with the use of microwave-synthesized ZnO NCs, in contrast to the non-reproducible and scattered data obtained with the conventionally-synthesized ones. Thus, we demonstrate how the synthetic route and, as a consequence, the control over all the nanomaterial properties are prominent points to be considered when dealing with the biological world for the achievement of reproducible and reliable results, and how the use of commercially-available and under-characterized nanomaterials should be discouraged in this view.


2018 ◽  
Vol 11 (1) ◽  
pp. 17 ◽  
Author(s):  
Rizwan Khan ◽  
Muhammad Inam ◽  
Muhammad Iqbal ◽  
Muhammad Shoaib ◽  
Du Park ◽  
...  

The zinc oxide nanoparticles (ZnO NPs) and surfactants that are widely used in commercial and industrial products lead to the likelihood of their co-occurrence in natural water, making it essential to investigate the effect of surfactants on the fate and mobility of ZnO NPs. The present study seeks to elucidate the effect of an anionic sodium dodecyl sulfate (SDS) and a nonionic nonylphenol ethoxylate (NPEO), on ZnO NPs adsorption, aggregation, dissolution, and removal by the coagulation process. The results indicate that the presence of SDS in ZnO NPs suspension significantly reduced the ζ-potential and hydrodynamic diameter (HDD), while the effect of NPEO was found not to be significant. The sorption of SDS and NPEO by ZnO NPs were fitted with Langmuir model, but the Freundlich isotherm was more suitable for SDS at pH 9.0. Moreover, the adsorption was strongly pH-dependent due to the formation of mono-bilayer patches onto the NPs. The SDS remarkably affect the dissolution and aggregation phenomena of ZnO NPs in natural waters as compared to NPEO. Finally, the coagulation results showed that the removal efficiency of ZnO, Zn2+ and the surfactant in synthetic and wastewaters at optimum ferric chloride (FC) dosage reached around 85–98% and 20–50%, respectively. Coagulation mechanism investigation demonstrated that the cooperation of charge neutralization and adsorptive micellar flocculation (AMF) might play an important role. In summary, this study may provide new insight into the environmental behavior of coexisting ZnO NPs and surfactants in water treatment processes, and it may facilitate their sustainable use in commercial products and processes.


2019 ◽  
Vol 9 (2) ◽  
pp. 281 ◽  
Author(s):  
Phumudzo Tshikhudo ◽  
Khayalethu Ntushelo ◽  
Fhatuwani Mudau ◽  
Bahare Salehi ◽  
Mehdi Sharifi-Rad ◽  
...  

Camellia sinensis is the most consumed beverage worldwide. It contains a wide variety of secondary metabolites, such as alkaloids, saponins, tannins, catechins, and polyphenols, generated through a condensation reaction of cinnamic acid with three malonyl-CoA groups. In addition to the metabolic processes occurring within this plant, there are also some plant-associated bacterial endophytes. These bacteria reside in the living tissues of the host plants without causing any harmful effect to them, thereby stimulating secondary metabolite production with a diverse range of biological effects. Omics technologies reveal understanding of the biological phenomena of transcriptomics, proteomics, and metabolomics. In this sense, the present review aims to provide a comprehensive review of various methods used to identify distinct plant compounds, namely transcriptomic, proteomic, and metabolomic analysis. The role of endophytic bacteria in C. sinensis metabolism, and C. sinensis antioxidant and antimicrobial effects, are also carefully highlighted.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1014 ◽  
Author(s):  
Vo Nguyen ◽  
Marie-Claire De Pauw-Gillet ◽  
Mario Gauthier ◽  
Olivier Sandre

Magnetic nanoparticles (MNPs) of magnetite (Fe3O4) were prepared using a polystyrene-graft-poly(2-vinylpyridine) copolymer (denoted G0PS-g-P2VP or G1) as template. These MNPs were subjected to self-assembly with a poly(acrylic acid)-block-poly(2-hydroxyethyl acrylate) double-hydrophilic block copolymer (DHBC), PAA-b-PHEA, to form water-dispersible magnetic polyion complex (MPIC) micelles. Large Fe3O4 crystallites were visualized by transmission electron microscopy (TEM) and magnetic suspensions of MPIC micelles exhibited improved colloidal stability in aqueous environments over a wide pH and ionic strength range. Biological cells incubated for 48 h with MPIC micelles at the highest concentration (1250 µg of Fe3O4 per mL) had a cell viability of 91%, as compared with 51% when incubated with bare (unprotected) MNPs. Cell internalization, visualized by confocal laser scanning microscopy (CLSM) and TEM, exhibited strong dependence on the MPIC micelle concentration and incubation time, as also evidenced by fluorescence-activated cell sorting (FACS). The usefulness of MPIC micelles for cellular radiofrequency magnetic field hyperthermia (MFH) was also confirmed, as the MPIC micelles showed a dual dose-dependent effect (concentration and duration of magnetic field exposure) on the viability of L929 mouse fibroblasts and U87 human glioblastoma epithelial cells.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2067
Author(s):  
Weronika Gawęda ◽  
Marek Pruszyński ◽  
Edyta Cędrowska ◽  
Magdalena Rodak ◽  
Agnieszka Majkowska-Pilip ◽  
...  

Barium ferrite nanoparticles (BaFeNPs) were investigated as vehicles for 223Ra radionuclide in targeted α-therapy. BaFe nanoparticles were labeled using a hydrothermal Ba2+ cations replacement by 223Ra with yield reaching 61.3 ± 1.8%. Radiolabeled nanoparticles were functionalized with 3-phosphonopropionic acid (CEPA) linker followed by covalent conjugation to trastuzumab (Herceptin®). Thermogravimetric analysis and radiometric method with the use of [131I]-labeled trastuzumab revealed that on average 19–21 molecules of trastuzumab are attached to the surface of one BaFe–CEPA nanoparticle. The hydrodynamic diameter of BaFe–CEPA–trastuzumab conjugate is 99.9 ± 3.0 nm in water and increases to 218.3 ± 3.7 nm in PBS buffer, and the zeta potential varies from +27.2 ± 0.7 mV in water to −8.8 ± 0.7 in PBS buffer. The [223Ra]BaFe–CEPA–trastuzumab radiobioconjugate almost quantitatively retained 223Ra (>98%) and about 96% of 211Bi and 94% of 211Pb over 30 days. The obtained radiobioconjugate exhibited high affinity, cell internalization and cytotoxicity towards the human ovarian adenocarcinoma SKOV-3 cells overexpressing HER2 receptor. Confocal studies indicated that [223Ra]BaFe–CEPA–trastuzumab was located in peri-nuclear space. High cytotoxicity of the [223Ra]BaFe–CEPA–trastuzumab bioconjugate was confirmed by radiotoxicity studies on SKOV-3 cell monolayers and 3D-spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Vít Herynek ◽  
Michal Babič ◽  
Ondřej Kaman ◽  
Hana Charvátová ◽  
Mariana Veselá ◽  
...  

AbstractA wise selection of tracers is critical for magnetic particle imaging (MPI). Most of the current tracers are based on superparamagnetic iron oxide nanoparticles (SPIONs) with a suitable coating. We prepared maghemite cores (γ-Fe2O3) by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide followed by oxidation with hydrogen peroxide and stabilization as an anionic (γ-Fe2O3⊖) or cationic colloid (γ-Fe2O3⨁). The cores were coated by poly(N-(2-hydroxypropyl)methacrylamide)-co-N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide. The particles were characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy, tested in vitro in a field-free point MPI scanner, and compared to nanoparticles prepared by oxidation with sodium hypochlorite and to the commercially available Resovist®. The cores had an average diameter of 8.0 nm (γ-Fe2O3⨁) and 8.7 nm (γ-Fe2O3⊖); the hydrodynamic diameter was 88 nm. Zeta potential values for both positively charged (+52 mV) and negatively charged particles (–60 mV) provided for good colloidal stabilization. Spinel structure of maghemite was confirmed by Mössbauer spectroscopy. The uncoated γ-Fe2O3⨁ particles yielded an MPI signal lower (by 16 %) than Resovist; the coated ones reached 88 % of the Resovist signal. Anionic γ-Fe2O3⊖ particles reached a higher (uncoated particles, by 15 %) or comparable (coated ones) signal relative to Resovist with a substantially lower signal dispersion. Control particles prepared by oxidation with sodium hypochlorite scored the weakest results. To conclude, a suitable size, narrow size distribution, and colloidal stability predispose the synthetized particles for use as a tracer for MPI. The anionic particles provided a higher signal with a lower dispersion than commercial tracers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1204
Author(s):  
Karen Bolaños ◽  
Macarena Sánchez-Navarro ◽  
Andreas Tapia-Arellano ◽  
Ernest Giralt ◽  
Marcelo J. Kogan ◽  
...  

Gold nanoparticles (AuNPs) have been shown to be outstanding tools for drug delivery and biomedical applications, mainly owing to their colloidal stability, surface chemistry, and photothermal properties. The biocompatibility and stability of nanoparticles can be improved by capping the nanoparticles with endogenous proteins, such as albumin. Notably, protein coating of nanoparticles can interfere with and decrease their cell penetration. Therefore, in the present study, we functionalized albumin with the r8 peptide (All-D, octaarginine) and used it for coating NIR-plasmonic anisotropic gold nanoparticles. Gold nanoprisms (AuNPrs) and gold nanorods (AuNRs) were coated with bovine serum albumin (BSA) previously functionalized using a cell penetrating peptide (CPP) with the r8 sequence (BSA-r8). The effect of the coated and r8-functionalized AuNPs on HeLa cell viability was assessed by the MTS assay, showing a low effect on cell viability after BSA coating. Moreover, the internalization of the nanostructures into HeLa cells was assessed by confocal microscopy and transmission electron microscopy (TEM). As a result, both nanoconstructs showed an improved internalization level after being capped with BSA-r8, in contrast to the BSA-functionalized control, suggesting the predominant role of CPP functionalization in cell internalization. Thus, our results validate both novel nanoconstructs as potential candidates to be coated by endogenous proteins and functionalized with a CPP to optimize cell internalization. In a further approach, coating AuNPs with CPP-functionalized BSA can broaden the possibilities for biomedical applications by combining their optical properties, biocompatibility, and cell-penetration abilities.


2021 ◽  
Vol 16 ◽  
pp. 165-171
Author(s):  
V. V. Rodchenko ◽  
Kyaw Ye Ko

In this work, the preparation of Fe3O4 nanoparticles modified with 3-aminopropyltriethoxysilane (APTES) was carried out under various synthesis modes (in air or in argon). The zeta potential and hydrodynamic diameter of Fe3O4-APTES nanoparticles were determined by the method of dynamic and electrokinetic light scattering. The effect of humic acids on the zeta potential, hydrodynamic diameter and colloidal stability of Fe3O4-APTES at different pH values was established by the method of dynamic and electrophoretic light scattering. It has been shown that changes in the conditions of the synthesis of nanoparticles of one component composition Fe3O4-APTES (argon) and Fe3O4-APTES (air) (in an inert medium and in an air atmosphere, respectively) lead to a change in the charge of the particle surface and a subsequent change in the sorption properties with respect to HA. It was demonstrated that the decisive role in the study of surface properties is played by the purification from low-molecular-weight impurities that can screen the surface of nanoparticles or bind with an indifferent electrolyte. The stage of dispersive post-preparation of samples is also important for the correct determination of the sorption capacity and hydrodynamic diameter of particles.


Sign in / Sign up

Export Citation Format

Share Document