scholarly journals Integration of Transcriptome and Methylome Analyses Provides Insight Into the Pathway of Floral Scent Biosynthesis in Prunus mume

2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Yuan ◽  
Kaifeng Ma ◽  
Man Zhang ◽  
Jia Wang ◽  
Qixiang Zhang

DNA methylation is a common epigenetic modification involved in regulating many biological processes. However, the epigenetic mechanisms involved in the formation of floral scent have rarely been reported within a famous traditional ornamental plant Prunus mume emitting pleasant fragrance in China. By combining whole-genome bisulfite sequencing and RNA-seq, we determined the global change in DNA methylation and expression levels of genes involved in the biosynthesis of floral scent in four different flowering stages of P. mume. During flowering, the methylation status in the “CHH” sequence context (with H representing A, T, or C) in the promoter regions of genes showed the most significant change. Enrichment analysis showed that the differentially methylated genes (DMGs) were widely involved in eight pathways known to be related to floral scent biosynthesis. As the key biosynthesis pathway of the dominant volatile fragrance of P. mume, the phenylpropane biosynthesis pathway contained the most differentially expressed genes (DEGs) and DMGs. We detected 97 DMGs participated in the most biosynthetic steps of the phenylpropane biosynthesis pathway. Furthermore, among the previously identified genes encoding key enzymes in the biosynthesis of the floral scent of P. mume, 47 candidate genes showed an expression pattern matching the release of floral fragrances and 22 of them were differentially methylated during flowering. Some of these DMGs may or have already been proven to play an important role in biosynthesis of the key floral scent components of P. mume, such as PmCFAT1a/1c, PmBEAT36/37, PmPAL2, PmPAAS3, PmBAR8/9/10, and PmCNL1/3/5/6/14/17/20. In conclusion, our results for the first time revealed that DNA methylation is widely involved in the biosynthesis of floral scent and may play critical roles in regulating the floral scent biosynthesis of P. mume. This study provided insights into floral scent metabolism for molecular breeding.

2019 ◽  
Vol 20 (23) ◽  
pp. 6070 ◽  
Author(s):  
Meng Zhang ◽  
Liping Guo ◽  
Tingxiang Qi ◽  
Xuexian Zhang ◽  
Huini Tang ◽  
...  

DNA methylation is an important epigenetic modification involved in multiple biological processes. Altered methylation patterns have been reported to be associated with male sterility in some plants, but their role in cotton cytoplasmic male sterility (CMS) remains unclear. Here, integrated methylome and transcriptome analyses were conducted between the CMS-D2 line ZBA and its near-isogenic maintainer line ZB in upland cotton. More methylated cytosine sites (mCs) and higher methylation levels (MLs) were found among the three sequence contexts in ZB compared to ZBA. A total of 4568 differentially methylated regions (DMRs) and 2096 differentially methylated genes (DMGs) were identified. Among the differentially expressed genes (DEGs) associated with DMRs (DMEGs), 396 genes were upregulated and 281 genes were downregulated. A bioinformatics analysis of these DMEGs showed that hyper-DEGs were significantly enriched in the “oxidative phosphorylation” pathway. Further qRT-PCR validation indicated that these hypermethylated genes (encoding the subunits of mitochondrial electron transport chain (ETC) complexes I and V) were all significantly upregulated in ZB. Our biochemical data revealed a higher extent of H2O2 production but a lower level of adenosine triphosphate (ATP) synthesis in CMS-D2 line ZBA. On the basis of the above results, we propose that disrupted DNA methylation in ZBA may disrupt the homeostasis of reactive oxygen species (ROS) production and ATP synthesis in mitochondria, triggering a burst of ROS that is transferred to the nucleus to initiate programmed cell death (PCD) prematurely, ultimately leading to microspore abortion. This study illustrates the important role of DNA methylation in cotton CMS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aya Sasaki ◽  
Margaret E. Eng ◽  
Abigail H. Lee ◽  
Alisa Kostaki ◽  
Stephen G. Matthews

AbstractSynthetic glucocorticoids (sGC) are administered to women at risk of preterm delivery, approximately 10% of all pregnancies. In animal models, offspring exposed to elevated glucocorticoids, either by administration of sGC or endogenous glucocorticoids as a result of maternal stress, show increased risk of developing behavioral, endocrine, and metabolic dysregulation. DNA methylation may play a critical role in long-lasting programming of gene regulation underlying these phenotypes. However, peripheral tissues such as blood are often the only accessible source of DNA for epigenetic analyses in humans. Here, we examined the hypothesis that prenatal sGC administration alters DNA methylation signatures in guinea pig offspring hippocampus and whole blood. We compared these signatures across the two tissue types to assess epigenetic biomarkers of common molecular pathways affected by sGC exposure. Guinea pigs were treated with sGC or saline in late gestation. Genome-wide modifications of DNA methylation were analyzed at single nucleotide resolution using reduced representation bisulfite sequencing in juvenile female offspring. Results indicate that there are tissue-specific as well as common methylation signatures of prenatal sGC exposure. Over 90% of the common methylation signatures associated with sGC exposure showed the same directionality of change in methylation. Among differentially methylated genes, 134 were modified in both hippocampus and blood, of which 61 showed methylation changes at identical CpG sites. Gene pathway analyses indicated that prenatal sGC exposure alters the methylation status of gene clusters involved in brain development. These data indicate concordance across tissues of epigenetic programming in response to alterations in glucocorticoid signaling.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3580
Author(s):  
Shatavisha Dasgupta ◽  
Patricia C. Ewing-Graham ◽  
Sigrid M. A. Swagemakers ◽  
Thierry P. P. van den Bosch ◽  
Peggy N. Atmodimedjo ◽  
...  

DNA methylation is the most widely studied mechanism of epigenetic modification, which can influence gene expression without alterations in DNA sequences. Aberrations in DNA methylation are known to play a role in carcinogenesis, and methylation profiling has enabled the identification of biomarkers of potential clinical interest for several cancers. For vulvar squamous cell carcinoma (VSCC), however, methylation profiling remains an under-studied area. We sought to identify differentially methylated genes (DMGs) in VSCC, by performing Infinium MethylationEPIC BeadChip (Illumina) array sequencing, on a set of primary VSCC (n = 18), and normal vulvar tissue from women with no history of vulvar (pre)malignancies (n = 6). Using a false-discovery rate of 0.05, beta-difference (Δβ) of ± 0.5, and CpG-island probes as cut-offs, 199 DMGs (195 hyper-methylated, 4 hypo-methylated) were identified for VSCC. Most of the hyper-methylated genes were found to be involved in transcription regulator activity, indicating that disruption of this process plays a vital role in VSCC development. The majority of VSCCs harbored amplifications of chromosomes 3, 8, and 9. We identified a set of DMGs in this exploratory, hypothesis-generating study, which we hope will facilitate epigenetic profiling of VSCCs. Prognostic relevance of these DMGs deserves further exploration in larger cohorts of VSCC and its precursor lesions.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2978
Author(s):  
Donghai Li ◽  
Cheng Pan ◽  
Jianjun Lu ◽  
Wajid Zaman ◽  
Huayan Zhao ◽  
...  

Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.


2020 ◽  
Vol 19 ◽  
pp. 153303382098379
Author(s):  
Xiying Yu ◽  
Ying Teng ◽  
Xingran Jiang ◽  
Hui Yuan ◽  
Wei Jiang

Background: Cancer stem cells (CSCs) are considered the main cause of cancer recurrence and metastasis, and DNA methylation is involved in the maintenance of CSCs. However, the methylation profile of esophageal CSCs remains unknown. Methods: Side population (SP) cells were isolated from esophageal squamous cell carcinoma (ESCC) cell lines KYSE150 and EC109. Sphere-forming cells were collected from human primary esophageal cancer cells. SP cells and sphere-forming cells were used as substitutes for cancer stem-like cells. We investigated the genome-wide DNA methylation profile in esophageal cancer stem-like cells using reduced representation bisulfite sequencing (RRBS). Results: Methylated cytosine (mC) was found mostly in CpG dinucleotides, located mostly in the intronic, intergenic, and exonic regions. Forty intersected differentially methylated regions (DMRs) were identified in these 3 groups of samples. Thirteen differentially methylated genes with the same alteration trend were detected; these included OTX1, SPACA1, CD163L1, ST8SIA2, TECR, CADM3, GRM1, LRRK1, CHSY1, PROKR2, LINC00658, LOC100506688, and NKD2. DMRs covering ST8SIA2 and GRM1 were located in exons. These differentially methylated genes were involved in 10 categories of biological processes and 3 cell signaling pathways. Conclusions: When compared to non-CSCs, cancer stem-like cells have a differential methylation status, which provides an important biological base for understanding esophageal CSCs and developing therapeutic targets for esophageal cancer.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lanyu Zhang ◽  
Tiago C. Silva ◽  
Juan I. Young ◽  
Lissette Gomez ◽  
Michael A. Schmidt ◽  
...  

AbstractDNA methylation differences in Alzheimer’s disease (AD) have been reported. Here, we conducted a meta-analysis of more than 1000 prefrontal cortex brain samples to prioritize the most consistent methylation differences in multiple cohorts. Using a uniform analysis pipeline, we identified 3751 CpGs and 119 differentially methylated regions (DMRs) significantly associated with Braak stage. Our analysis identified differentially methylated genes such as MAMSTR, AGAP2, and AZU1. The most significant DMR identified is located on the MAMSTR gene, which encodes a cofactor that stimulates MEF2C. Notably, MEF2C cooperates with another transcription factor, PU.1, a central hub in the AD gene network. Our enrichment analysis highlighted the potential roles of the immune system and polycomb repressive complex 2 in pathological AD. These results may help facilitate future mechanistic and biomarker discovery studies in AD.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi58-vi58
Author(s):  
Yasin Mamatjan ◽  
Michael Cabanero ◽  
Jeffrey Zuccato ◽  
Jessica Weiss ◽  
Shirin Karimi ◽  
...  

Abstract Brain metastasis (BM) in patients with EGFR-mutant lung adenocarcinoma is a major determinant of overall survival. Novel insight into the genetic and epigenetic underpinnings of BM development is lacking. The aim of this study is to compare the methylome of EGFR-mutant primary lung adenocarcinoma (EGFRM-PLA) and matched BM to identify important alterations for the mechanisms of BM. Matched EGFRM-PLA and BM tumors from seven patients were profiled using the Illumina Infinium MethylationEPIC BeadChip array. Unsupervised clustering analyses of the 14 samples showed a similar whole DNA methylation signatures between EGFRM-PLA and BM tumors. Furthermore, PCA plot highlighted that seven matched BM and lung tumor samples were clustered together closely based on matching pairs for the most variable probes (2.5K to 10K). These observations indicate high level of concordance and the same cell of origin. However, these fourteen samples clustered into two groups based on tumor site being lung or brain based on 83K differentially methylated CpG sites. Of the 83K probes, 2.4K were either hypermethylated or hypomethylated in all lung samples. A quarter of these 2.4K probes were located in promoter regions. Specifically, we identified differences in methylation status of EGFR/ALK promoter regions in lung tumors versus BM. CNV analyses showed higher deep deletions of chromosomes and genes in BM compared to EGFRM-PLA. Leukocytes unmethylation for purity (LUMP) scores which indicate immune cell infiltration were similar between lung and BM pairs (Mean LUMP_score=0.64) consistent with high immune cell infiltration. Our results indicated a similar whole DNA methylation signature of EGFRM-PLA and matched BM, while comprehensive analysis identified important differentially methylated probes. Distinct differences in CNV alterations were observed in lung versus brain samples. The BM and EGFRM-PLA showed similar tumor purity and immune cell components. Overall, tumor methylation profiling provides clinically important information regarding biology of BM in EGFRM-PLA.


2020 ◽  
Vol 21 (22) ◽  
pp. 8453
Author(s):  
Ying-peng Hua ◽  
Ting Zhou ◽  
Jin-yong Huang ◽  
Cai-peng Yue ◽  
Hai-xing Song ◽  
...  

Improving crop nitrogen (N) limitation adaptation (NLA) is a core approach to enhance N use efficiency (NUE) and reduce N fertilizer application. Rapeseed has a high demand for N nutrients for optimal plant growth and seed production, but it exhibits low NUE. Epigenetic modification, such as DNA methylation and modification from small RNAs, is key to plant adaptive responses to various stresses. However, epigenetic regulatory mechanisms underlying NLA and NUE remain elusive in allotetraploid B. napus. In this study, we identified overaccumulated carbohydrate, and improved primary and lateral roots in rapeseed plants under N limitation, which resulted in decreased plant nitrate concentrations, enhanced root-to-shoot N translocation, and increased NUE. Transcriptomics and RT-qPCR assays revealed that N limitation induced the expression of NRT1.1, NRT1.5, NRT1.7, NRT2.1/NAR2.1, and Gln1;1, and repressed the transcriptional levels of CLCa, NRT1.8, and NIA1. High-resolution whole genome bisulfite sequencing characterized 5094 differentially methylated genes involving ubiquitin-mediated proteolysis, N recycling, and phytohormone metabolism under N limitation. Hypermethylation/hypomethylation in promoter regions or gene bodies of some key N-metabolism genes might be involved in their transcriptional regulation by N limitation. Genome-wide miRNA sequencing identified 224 N limitation-responsive differentially expressed miRNAs regulating leaf development, amino acid metabolism, and plant hormone signal transduction. Furthermore, degradome sequencing and RT-qPCR assays revealed the miR827-NLA pathway regulating limited N-induced leaf senescence as well as the miR171-SCL6 and miR160-ARF17 pathways regulating root growth under N deficiency. Our study provides a comprehensive insight into the epigenetic regulatory mechanisms underlying rapeseed NLA, and it will be helpful for genetic engineering of NUE in crop species through epigenetic modification of some N metabolism-associated genes.


2020 ◽  
Vol 13 ◽  
pp. 251686572095968
Author(s):  
Allison H Rietze ◽  
Yvette P Conley ◽  
Dianxu Ren ◽  
Cindy M Anderson ◽  
James M Roberts ◽  
...  

Objective: We compared blood-based DNA methylation levels of endoglin ( ENG) and transforming growth factor beta receptor 2 ( TGFβR2) gene promoter regions between women with clinically-overt preeclampsia and women with uncomplicated, normotensive pregnancies. Methods: We used EpiTect Methyl II PCR Assays to evaluate DNA methylation of CpG islands located in promoter regions of ENG (CpG Island 114642) and TGFβR2 (CpG Island 110111). Preeclampsia was diagnosed based on blood pressure, protein, and uric acid criteria. N = 21 nulliparous preeclampsia case participants were 1:1 frequency matched to N = 21 nulliparous normotensive control participants on gestational age at sample collection (±2 weeks), smoking status, and labor status at sample collection. Methylation values were compared between case and control participant groups [( ENG subset: n = 20 (9 cases, 11 controls); TGFβR2 subset: n = 28 (15 cases, 13 controls)]. Results: The majority of the preeclampsia cases delivered at ⩾34 weeks’ gestation (83%). Average methylation levels for ENG ([M ± (SD)]; Case Participant Group = 6.54% ± 4.57 versus Control Participant group = 4.81% ± 5.08; P = .102) and TGFβR2 (Case Participant Group = 1.50% ± 1.37 vs Control Participant Group = 1.70% ± 1.40; P = .695) promoter CpG islands did not differ significantly between the participant groups. Removal of 2 extreme outliers in the ENG analytic subset revealed a trend between levels of ENG methylation and pregnancy outcome (Case Participant Group = 5.17% ± 2.16 vs Control Participant Group = 3.36% ± 1.73; P = .062). Conclusion: Additional epigenetic studies that include larger sample sizes, investigate preeclampsia subtypes, and capture methylation status of CpG island shores and shelves are needed to further inform us of the potential role that ENG and TGFβR2 DNA methylation plays in preeclampsia pathophysiology.


2018 ◽  
Vol 50 (9) ◽  
pp. 714-723 ◽  
Author(s):  
Xiaolong Zhou ◽  
Songbai Yang ◽  
Feifei Yan ◽  
Ke He ◽  
Ayong Zhao

DNA methylation is an important epigenetic modification involved in the estrous cycle and the regulation of reproduction. Here, we investigated the genome-wide profiles of DNA methylation in porcine ovaries in proestrus and estrus using methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in intergenic and intron regions. The methylation levels of coding regions were higher than those of the 5′- and 3′-flanking regions of genes. There were 4,813 differentially methylated regions (DMRs) of CpG islands in the estrus vs. proestrus ovarian genomes. Additionally, 3,651 differentially methylated genes (DMGs) were identified in pigs in estrus and proestrus. The DMGs were significantly enriched in biological processes and pathways related to reproduction and hormone regulation. We identified 90 DMGs associated with regulating reproduction in pigs. Our findings can serve as resources for DNA methylome research focused on porcine ovaries and further our understanding of epigenetically regulated reproduction in mammals.


Sign in / Sign up

Export Citation Format

Share Document