fractal spectrum
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 7 (5) ◽  
pp. 4829-4839
Author(s):  
Xiaodong Wang ◽  
Ying Zhao ◽  
Yuegang Song ◽  
Hongliang Wang

Objectives: In day-to-day operation and management activities, attention is paid to preventing and controlling financial risks, which will prevent risks or minimize losses. Methods: The current state of financial management in companies is analyzed, and then how to effectively prevent and promote measures is systematically discussed. Results: Firstly, a multi-fractal spectrum program design algorithm is constructed and multi-fractal spectrum analysis and feature derivations are carried out. Then, several companies are selected as research objects, and the financial management of the company’s operations and stock price changes and tests are simulated. Conclusion: It can be seen that the algorithm constructed in this paper can predict the stock price through the shape of the bell-shaped spectrum and has high accuracy.


Author(s):  
Jianjun Wang ◽  
Lingli Liu ◽  
Zehong Cui ◽  
Hongjun Wang ◽  
Teng Li ◽  
...  

AbstractThe low-temperature nitrogen adsorption measurement is commonly used to describe the pore structure of porous medium, while the role of degassing temperature in the low-temperature nitrogen adsorption measurement does not attract enough attention, various degassing temperatures may lead to the different pore structure characterization for the same coal. In this study, the low-rank coal collected from Binchang mining area, southwest of Ordos Basin was launched the low-temperature nitrogen adsorption measurement under seven various degassing temperatures (120 °C, 150 °C, 180 °C, 210 °C, 240 °C, 270 °C and 300 °C), respectively, the dynamic change of the pore structure under refined upgrading degassing temperatures are studied, and it was also quantitative evaluated with the multi-fractal theory. The results show that the pore specific surface area and pore volume decrease linearly with the increased degassing temperatures, ranges from 12.53 to 2.16 m2/g and 0.01539 to 0.00535 cm3/g, respectively. While the average pore aperture features the contrary characteristics (various from 4.9151 to 9.9159 nm), indicating the pore structure has been changed during the refined upgrading degassing temperatures. With the upgrading degassing temperatures, the sizes of hysteresis loop decrease, and the connectivity of pore structure enhanced. The multi-fractal dimension and multi-fractal spectrum could better present the partial abnormal of pore structure during the refined upgrading degassing temperatures, and the quality index, Dq spectrum, D−10–D10 and multi-fractal spectrum could describe the homogeneity and connectivity of the pores finely. The degassing temperatures of 150 °C, 180 °C and 270 °C are selected as three knee points, which can reflect the partial abnormal of the pore structure during the refined upgrading degassing temperatures. Under the lower degassing temperature (< 150 °C), the homogeneity and connectivity of the pore feature a certain increase, following that it presents stable when the degassing temperatures various from 150 to 180 °C. The homogeneity and connectivity of the pore would further enhanced until the degassing temperature reaches to 270 °C. Because of the melting of the pore when the degassing temperature exceeds 270 °C, the complexity of pore structure increased. In this study, we advise the degassing temperature for low-temperature nitrogen adsorption measurement of low-rank coal should not exceed 120 °C.


2021 ◽  
Vol 25 (1) ◽  
pp. 49-55
Author(s):  
Yiying Xiong

In view of the inaccuracy of the traditional correlation analysis method, this paper proposes a correlation analysis method between the multifractal characteristics of regional landforms and the development of geological disasters. Firstly, the multifractal characteristics of regional landforms are described by using the basic fractal characteristics of self-similarity or scale invariance. Then the corresponding relation table is established according to the width of the fractal spectrum and the number of landslides and hidden dangers, and the spatial relationship of geological disaster development is analyzed. Combined with the above-mentioned spatial relationship of geological disaster development and the multifractal characteristic data of regional landforms, the correlation coefficient between the two is calculated to complete the correlation analysis between the multifractal characteristics of regional geomorphology and the development of geological disasters. The experimental results show that compared with the traditional correlation analysis method, the correlation analysis results of the multifractal characteristics of regional geomorphology and the development of geological disasters are more accurate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mahdi Mohseni ◽  
Volker Gast ◽  
Christoph Redies

This study investigates global properties of three categories of English text: canonical fiction, non-canonical fiction, and non-fictional texts. The central hypothesis of the study is that there are systematic differences with respect to structural design features between canonical and non-canonical fiction, and between fictional and non-fictional texts. To investigate these differences, we compiled a corpus containing texts of the three categories of interest, the Jena Corpus of Expository and Fictional Prose (JEFP Corpus). Two aspects of global structure are investigated, variability and self-similar (fractal) patterns, which reflect long-range correlations along texts. We use four types of basic observations, (i) the frequency of POS-tags per sentence, (ii) sentence length, (iii) lexical diversity, and (iv) the distribution of topic probabilities in segments of texts. These basic observations are grouped into two more general categories, (a) the lower-level properties (i) and (ii), which are observed at the level of the sentence (reflecting linguistic decoding), and (b) the higher-level properties (iii) and (iv), which are observed at the textual level (reflecting comprehension/integration). The observations for each property are transformed into series, which are analyzed in terms of variance and subjected to Multi-Fractal Detrended Fluctuation Analysis (MFDFA), giving rise to three statistics: (i) the degree of fractality () of the fractal spectrum. The statistics thus obtained are compared individually across text categories and jointly fed into a classification model (Support Vector Machine). Our results show that there are in fact differences between the three text categories of interest. In general, lower-level text properties are better discriminators than higher-level text properties. Canonical fictional texts differ from non-canonical ones primarily in terms of variability in lower-level text properties. Fractality seems to be a universal feature of text, slightly more pronounced in non-fictional than in fictional texts. On the basis of our results obtained on the basis of corpus data we point out some avenues for future research leading toward a more comprehensive analysis of textual aesthetics, e.g., using experimental methodologies.


2021 ◽  
Vol 13 (4) ◽  
pp. 587
Author(s):  
Zhiheng Liu ◽  
Ling Han ◽  
Chengyan Du ◽  
Hongye Cao ◽  
Jianhua Guo ◽  
...  

The distribution and characteristics of geological lineaments in areas with active faulting are vital for providing a basis for regional tectonic identification and analyzing the tectonic significance. Here, we extracted the lineaments in the Qianhe Graben, an active mountainous area on the southwest margin of Ordos Block, China, by using the tensor voting algorithm after comparing them with the segment tracing algorithm (STA) and LINE algorithm in PCI Geomatica Software. The main results show that (1) the lineaments in this area are mostly induced by the active fault events with the main trending of NW–SE, (2) the box dimensions of all lineaments, NW–SE trending lineaments, and NE–SW trending lineaments are 1.60, 1.48, and 1.44 (R2 > 0.9), respectively, indicating that the faults exhibit statistical self-similarity, and (3) the lineaments have multifractal characteristics according to the mass index τ(q), generalized fractal dimension D(q), fractal width (Δα = 2.25), fractal spectrum shape (f(α) is a unimodal left-hook curve), and spectrum width (Δf = 1.21). These results are related to the tectonic activity in this area, where a higher tectonic activity leads to more lineaments being produced and a higher fractal dimension. All of these results suggest that such insights can be beneficial for providing potential targets in reconstructing the tectonic structure of the area and trends of plate movement.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julien Barrier ◽  
Piranavan Kumaravadivel ◽  
Roshan Krishna Kumar ◽  
L. A. Ponomarenko ◽  
Na Xin ◽  
...  

AbstractIn quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 106 cm2 V−1 s−1 and the mean free path exceeding several micrometers. The exceptional quality of our devices allows us to show that Brown-Zak minibands are 4q times degenerate and all the degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1 K. We also found negative bend resistance at 1/q fractions for electrical probes placed as far as several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in high fields along straight trajectories, just like electrons in zero field.


2020 ◽  
Vol 22 (10) ◽  
pp. 2579-2596
Author(s):  
Pingping Tang ◽  
Yuning Dong ◽  
Jiong Jin ◽  
Shiwen Mao

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 266 ◽  
Author(s):  
Yan Liu ◽  
Dongxiao Ding ◽  
Kai Ma ◽  
Kuan Gao

In this study, some important intrinsic dynamics have been captured after analyzing the relationships between the dynamic pressure at an outlet of centrifugal compressor and fractal characteristics, which is one of powerful descriptions in entropy to measure the disorder or complexity in the nonlinear dynamic system. In particular, the fractal dynamics of dynamic pressure of the flow is studied, as the centrifugal compressor is in surge state, resulting in the dynamic pressure of flow and becoming a serious disorder and complex. First, the dynamic pressure at outlet of a centrifugal compressor with 800 kW is tested and then obtained by controlling the opening of the anti-surge valve at the outlet, and both the stable state and surge are initially tested and analyzed. Subsequently, the fractal dynamics is introduced to study the intrinsic dynamics of dynamic pressure under various working conditions, in order to identify surge, which is one typical flow instability in centrifugal compressor. Following fractal dynamics, the Hurst exponent, autocorrelation functions, and variance in measure theories of entropy are studied to obtain the mono-fractal characteristics of the centrifugal compressor. Further, the multi-fractal spectrums are investigated in some detail, and their physical meanings are consequently explained. At last, the statistical reliability of multi-fractal spectrum by modifying the original data has been studied. The results show that a distinct relationship between the dynamic pressure and fractal characteristics exists, including mono-fractal and multi-fractal, and such fractal dynamics are intrinsic. As the centrifugal compressor is working under normal condition, its autocorrelation function curve demonstrates apparent stochastic characteristics, and its Hurst exponent and variance are lower. However, its autocorrelation function curve demonstrates an apparent heavy tail distribution, and its Hurst exponent and variance are higher, as it is working in an unstable condition, namely, surge. In addition, the results show that the multi-fractal spectrum parameters are closely related to the dynamic pressure. With the state of centrifugal compressor being changed from stable to unstable states, some multi-fractal spectrum parameters Δα, Δf(α), αmax, and f(αmin) become larger, but αmin in the multi-fractal spectrum show the opposite trend, and consistent properties are graphically shown for the randomly shuffled data. As a conclusion, the proposed method, as one measure method for entropy, can be used to feasibly identify the incipient surge of a centrifugal compressor and design its surge controller.


2019 ◽  
Vol 129 ◽  
pp. 01017
Author(s):  
Olga Malinnikova ◽  
Dmitry Uchaev ◽  
Denis Uchaev ◽  
Vasiliy Malinnikov

The possibility of using a multifractal approach to study the tectonic disturbance of coals has been investigated. The relationship between the coal disturbance and the asymmetry of fractal spectra of coal images obtained by means of scanning electron microscopy (SEM) is revealed: it has been established that undisturbed coals are characterized, as a rule, by a symmetric fractal dimension spectrum, and the disturbed coals are described by a fractal spectrum with some degree of asymmetry. It is shown that if fractal spectra of images have a symmetric appearance, then brightness distributions of these images are well fitted by a lognormal curves and parameters of these fittings can be estimated through characteristics of the fractal spectra. By using multifractal analysis of images for more than 140 test coal specimens from the quiet zone of a seam and the outburst zone, differences in the brightness distributions for images of coals with various degrees of disturbance were revealed. The basis of the research is the assumption that differences in the structure of disturbed and undisturbed coals are reflected in histograms of the brightness distributions for images of coal specimens. According to the results of multifractal analysis of images for the test coal specimens, it was established that the brightness distributions for images of the surface of undisturbed coal specimens are lognormal, while the brightness distributions for images of the surface of highly disturbed coal specimens, in most cases, deviate from the lognormal one. The conducted studies allow us to conclude about the applicability of the multifractal approach for assessing the degree of coal disturbance using digital images of coal specimens.


Sign in / Sign up

Export Citation Format

Share Document