Smart Crude Desalter Monitoring System Using Capacitance Based Technology
Abstract Saudi Aramco operates several electrostatic coalescers for bulk emulsion separation and crude desalting. One of the major challenges in operating electrostatic coalescers is the potential buildup of tight emulsions and a rag layer at the interface layer, which causes short-circuiting of the electrostatic grids which increases the risk excessive carryover of water with the crude. Conventional liquid level instrumentation cannot measure the thickness of emulsion layers since the level taps are at the clean oil and water layers. Consequently, the buildup of emulsions is normally not detected by operators. A capacitance-based emulsion detection system was installed at one of the electrostatic coalescers of a Saudi Aramco facility. The system is comprised of multiple probes installed at various elevations in the vessel. Each probe measures the capacitance of the liquid in which it is immersed in. The data is then transmitted to the DCS, where an algorithm computes the oil/water content. Saudi Aramco developed an enhanced predictive alarm logic and advisory tool using the measured capacitance data so that operations may take preemptive measures to prevent upsets from occurring. The alarm system was tested over an extended period of time and it has shown that it can accurately detect the buildup of emulsions prior to an upset in the electrostatic coalescer. What is unique about the system is that it utilizes a combination of absolute capacitance measurements and capacitance variations in the algorithm. Emulsion buildups are detected by the alarm system hours before a potential upset, providing operators ample time to take preemptive measures such as increasing the demulsifier injection rate, desludging the vessel or lowering the interface level. The system significantly reduced the number of electrostatic coalescer upsets at the facility and crude quality was enhanced. Upon inspection of the probes during shutdowns, no buildup of deposits, which impacts capacitance readings, were found on the probes since a flushing system was installed. The alarm system has been utilized for four years with no major issues. Utilizing the capacitance probes to develop an algorithm for an alarm system is a novel technique to detect emulsion layer buildup hours prior to a potential electrostatic grid upset. Large-scale deployment is more economical as it is more cost-effective than radioactive profilers and is logistically easier to manage.