scholarly journals p53 is Functionally Inhibited in Clear Cell Renal Cell Carcinoma (Ccrcc): A Mechanistic and Correlative Investigation into Genetic and Molecular Characteristics.

Author(s):  
Karoline Diesing ◽  
Silvia Ribback ◽  
Stefan Winter ◽  
Manuela Gellert ◽  
Antonia M. Oster ◽  
...  

Abstract Purpose Although p53 is rarely mutated in ccRCC, its overexpression has been linked to poor prognosis. The current study sought to elucidate the unique role of p53 in ccRCC with genomic, proteomic, and functional analyses. Materials and Methods Data from the Cancer Genome Atlas (TCGA) were evaluated for genomic and proteomic characteristics of p53; a tissue micro array (TMA) study was carried out to evaluate the association of p53 and phosphorylated p53 (pp53) with clinical outcome. Mechanistic in vitro experiments were performed to confirm a pro-apoptotic loss of p53 in ccRCC and p53 isoforms as well as posttranslational modifications of p53 where assessed to provide possible reasons for a functional inhibition of p53 in ccRCC. Results A low somatic mutation rate of p53 could be confirmed. Although mRNA levels were correlated with poor prognosis and clinicopathological features, there was no monotonous association of mRNA levels with survival outcome. Higher p53 protein levels could be confirmed as poor prognostic features. In vitro, irradiation of ccRCC cell lines markedly induced levels of p53 and of activated (phosphorylated) p53. However, irradiated ccRCC cells demonstrated similar proliferation, migration, and p53 transcriptional activity like non-irradiated controls indicating a functional inhibition of p53. p53 isoforms and could not be correlated with clinical outcome of ccRCC patients. Conclusions p53 is rarely mutated but the wildtype p53 is functionally inhibited in ccRCC. To investigate mechanisms that underly functional inhibition of p53 may provide attractive therapeutic targets in ccRCC.

Author(s):  
Karoline Diesing ◽  
Silvia Ribback ◽  
Stefan Winter ◽  
Manuela Gellert ◽  
Antonia M. Oster ◽  
...  

Abstract Purpose Although p53 is rarely mutated in ccRCC, its overexpression has been linked to poor prognosis. The current study sought to elucidate the unique role of p53 in ccRCC with genomic, proteomic, and functional analyses. Materials and methods Data from the Cancer Genome Atlas (TCGA) were evaluated for genomic and proteomic characteristics of p53; a tissue micro array (TMA) study was carried out to evaluate the association of p53 and phosphorylated p53 (pp53) with clinical outcome. Mechanistic in vitro experiments were performed to confirm a pro-apoptotic loss of p53 in ccRCC and p53 isoforms as well as posttranslational modifications of p53 where assessed to provide possible reasons for a functional inhibition of p53 in ccRCC. Results A low somatic mutation rate of p53 could be confirmed. Although mRNA levels were correlated with poor prognosis and clinicopathological features, there was no monotonous association of mRNA levels with survival outcome. Higher p53 protein levels could be confirmed as poor prognostic features. In vitro, irradiation of ccRCC cell lines markedly induced levels of p53 and of activated (phosphorylated) p53. However, irradiated ccRCC cells demonstrated similar proliferation, migration, and p53 transcriptional activity like non-irradiated controls indicating a functional inhibition of p53. p53 isoforms and could not be correlated with clinical outcome of ccRCC patients. Conclusions p53 is rarely mutated but the wildtype p53 is functionally inhibited in ccRCC. To investigate mechanisms that underlie functional inhibition of p53 may provide attractive therapeutic targets in ccRCC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jie Zhang ◽  
Qianqian Song ◽  
Jinxia Liu ◽  
Lina Lu ◽  
Yuqing Xu ◽  
...  

Cyclin-dependent kinase regulatory subunit 2 (CKS2) is a member of the cell cycle-dependent protein kinase subunit family, which is implicated as an oncogene in various malignancies. However, the clinical significance, oncogenic functions, and related mechanisms of CKS2 in hepatocellular carcinoma (HCC) remain largely unclear. In the present study, expression features and prognostic value of CKS2 were evaluated in the bioinformatic databases and HCC tissues. The effects of CKS2 on the malignant phenotypes of HCC cells were explored in vitro. According to the analyses of three bioinformatic databases, mRNA levels of CKS2 were elevated in HCC tissues compared with the normal tissues. Immunohistochemical assays found that high CKS2 expression was closely associated with liver cirrhosis (P=0.019), poor differentiation (P=0.02), portal vein invasion (P<0.001), TNM stage (P=0.019), tumor metastasis (P=0.008), and recurrence (P=0.003). The multivariate regression analyses suggested that CKS2 was an independent prognostic factor for overall survival (HR=2.088, P=0.014) and disease-free survival (HR=2.511, P=0.002) of HCC patients. Moreover, the bioinformatic analyses indicated that CKS2 might be associated with the malignant phenotypes in HCC progression. In addition, in vitro assays showed that CKS2 expression was higher in HCC cell lines than in normal liver cells. Knockdown of CKS2 remarkably repressed the proliferation, colony formation (P=0.0003), chemoresistance, migration (P=0.0047), and invasion (P=0.0012) of HCC cells. Taken together, overexpression of CKS2 was significantly correlated with poor prognosis of HCC patients and the malignant phenotypes of HCC cells, suggesting that it was a novel prognostic biomarker and potential target of HCC.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1995
Author(s):  
Shashwat Sharad ◽  
Zsófia M. Sztupinszki ◽  
Yongmei Chen ◽  
Claire Kuo ◽  
Lakshmi Ravindranath ◽  
...  

Dysfunctions of androgen/TGF-β signaling play important roles in prostate tumorigenesis. Prostate Transmembrane Protein Androgen Induced 1 (PMEPA1) inhibits androgen and TGF-β signaling via a negative feedback loop. The loss of PMEPA1 confers resistance to androgen signaling inhibitors and promotes bone metastasis. Conflicting reports on the expression and biological functions of PMEPA1 in prostate and other cancers propelled us to investigate isoform specific functions in prostate cancer (PCa). One hundred and twenty laser capture micro-dissection matched normal prostate and prostate tumor tissues were analyzed for correlations between quantitative expression of PMEPA1 isoforms and clinical outcomes with Q-RT-PCR, and further validated with a The Cancer Genome Atlas (TCGA) RNA-Seq dataset of 499 PCa. Cell proliferation was assessed with cell counting, plating efficiency and soft agar assay in androgen responsive LNCaP and TGF-β responsive PC3 cells. TGF-β signaling was measured by SMAD dual-luciferase reporter assay. Higher PMEPA1-a mRNA levels indicated biochemical recurrence (p = 0.0183) and lower PMEPA1-b expression associated with metastasis (p = 0.0173). Further, lower PMEPA1-b and a higher ratio of PMEPA1-a vs. -b were correlated to higher Gleason scores and lower progression free survival rate (p < 0.01). TGF-β-responsive PMEPA1-a promoted PCa cell growth, and androgen-responsive PMEPA1-b inhibited cancer cell proliferation. PMEPA1 isoforms -a and -b were shown to be promising candidate biomarkers indicating PCa aggressiveness including earlier biochemical relapse and lower disease specific life expectancy via interrupting androgen/TGF-β signaling.


Author(s):  
Ye-wei Zhang ◽  
Qian Chen ◽  
Bo Li ◽  
Hai-Yang Li ◽  
Xue-Ke Zhao ◽  
...  

NAP1L1 has been reported to be significantly involved in the carcinogenesis of hepatocellular carcinoma (HCC). Yet, its detailed molecular basis is still to be determined. Based on the analysis of The Cancer Genome Atlas (TCGA) database, NAP1L1 mRNA was found to be upregulated and predicted the poor prognosis initially. Subsequently, consistent with the prediction, the upregulated expression of NAP1L1 mRNA and protein levels was confirmed by quantitative polymerase chain reaction (qPCR), Western blot, and immunohistochemistry assays. Upregulated NAP1L1 protein positively promoted the disease progression and poor prognosis of HCC. In addition, NAP1L1 protein expression was considered as an independent prognostic factor in HCC. Inhibition of NAP1L1 expression by siRNA or shRNA pathway significantly reduced the cell proliferation and cell cycle transformation in vitro and in vivo. Mechanism analysis first showed that the function of NAP1L1 was to recruit hepatoma-derived growth factor (HDGF), an oncogene candidate widely documented in tumors. Furthermore, the latter interacted with c-Jun, a key oncogenic transcription factor that can induce the expression of cell cycle factors and thus stimulate the cell growth in HCC. Finally, transfecting HDGF or c-Jun could reverse the suppressive effects on HCC growth in NAP1L1-suppressed HCC cells. Our data indicate that NAP1L1 is a potential oncogene and acts via recruiting HDGF/c-Jun in HCC.


Oncogenesis ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin J. Pridham ◽  
Farah Shah ◽  
Kasen R. Hutchings ◽  
Kevin L. Sheng ◽  
Sujuan Guo ◽  
...  

AbstractCircumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
George S. Krasnov ◽  
Grigory A. Puzanov ◽  
Marina A. Afanasyeva ◽  
Erdem B. Dashinimaev ◽  
Khava S. Vishnyakova ◽  
...  

Abstract Non-Small Cell Lung Cancer (NSCLC) is responsible for the majority of deaths caused by cancer. Small C-terminal domain (CTD) phosphatases (SCP), CTDSP1, CTDSP2 and CTDSPL (CTDSPs) belong to SCP/CTDSP subfamily and are involved in many vital cellular processes and tumorigenesis. High similarity of their structures suggests similar functions. However their role in NSCLC remains insufficiently understood. For the first time we revealed the suppressor function of CTDSPs leading to a significant growth slowdown and senescence of A549 lung adenocarcinoma (ADC) cells in vitro. Their tumor-suppressive activity can be realized through increasing the proportion of the active form of Rb protein dephosphorylated at Ser807/811, Ser780, and Ser795 (P&lt;0.05) thereby negatively regulating cancer cell proliferation. Moreover, we observed that a frequent (84%, 39/46) and highly concordant (Spearman’s rank correlation coefficient (rs) = 0.53–0.62, P≤0.01) down-regulation of CTDSPs and RB1 is characteristic of primary NSCLC samples (n=46). A clear difference in their mRNA levels was found between lung ADCs with and without lymph node metastases, but not in squamous cell carcinomas (SCCs) (P≤0.05). Based on The Cancer Genome Atlas (TCGA) data and the results obtained using the CrossHub tool, we suggest that the well-known oncogenic cluster miR-96/182/183 could be a common expression regulator of CTDSPs. Indeed, according to our qPCR, the expression of CTDSPs negatively correlates with these miRs, but positively correlates with their intronic miR-26a/b. Our results reflect functional association of CTDSP1, CTDSP2, and CTDSPL, expand knowledge about their suppressor properties through Rb dephosphorylation and provide new insights into the regulation of NSCLC growth.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yumei Qi ◽  
Yo-Liang Lai ◽  
Pei-Chun Shen ◽  
Fang-Hsin Chen ◽  
Li-Jie Lin ◽  
...  

AbstractCervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12736
Author(s):  
Chaozhi Yang ◽  
Xuebing Wang ◽  
Chenjie Qiu ◽  
Ziruo Zheng ◽  
Kai Lin ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the common malignant tumors with high lethal rate and poor prognosis. Dysregulation of many genes have been reported to be involved in the occurrence and development of PDAC. However, as a highly conserved gene in eukaryotes, the role of Fasciculation and Elongation protein Zeta 2 (FEZ2) in pancreatic cancer progression is not clear. In this study, we identified the oncogenic effect of FEZ2 on PDAC. By mining of The Cancer Genome Atlas (TCGA) database, we found that FEZ2 was upregulated in PDAC tissues and FEZ2 expression was negatively regulated by its methylation. Moreover, high expression and low methylation of FEZ2 correlated with poor prognosis in PDAC patients. Besides, we found that FEZ2 could promote PDAC cells proliferation, migration and 5-FU resistance in vitro. Furthermore, Gene pathway enrichment analysis demonstrated a positive correlation between Wnt signaling activation and FEZ2 expression in PDAC patients. Western blot showed that FEZ2 knockdown significantly suppressed β-catenin expression. Collectively, our finding revealed that FEZ2 functioned as a potential oncogene on PDAC progression and migration, and the expression of FEZ2 had guidance value for the treatment and chemotherapy program of PDAC patients.


2020 ◽  
Vol 18 ◽  
pp. 205873922094614
Author(s):  
Hua-Li Zhu ◽  
Jing Zou

It is indicated that the dysregulation of long noncoding RNAs (lncRNAs) is implicated in cancer progression. However, the clinical significance of lncRNA small nucleolar RNA host gene 1 (SNHG1) in gastric cancer remains elusive. The expression levels of SNHGs and the association of SNHG1/10/11 with the clinical characteristics in patients with gastric cancer were analyzed by The Cancer Genome Atlas RNA-seq data. A Cox proportional hazard regression model was used to evaluate the association of SNHG1/10/11 expression with the clinical outcomes in patients with gastric cancer. It was demonstrated that SNHG1/10/11 expression levels were dramatically elevated in gastric cancer tissue samples as compared with the adjacent normal tissues. Increased expression of SNHG1 had no correlation with the clinicopathological parameters, but acted as an independent prognostic factor of poor survival (hazard ration (HR) = 0.590, 95% confidence interval (CI) = 0.399–0.872, P = 0.008) and tumor recurrence (HR = 2.457, 95% CI = 1.442–4.186, P = 0.001) in patients with gastric cancer. In addition, knockdown of SNHG1 in vitro inhibited the proliferation and invasion of gastric cancer cells. Our findings showed that the upregulation of lncRNA SNHG1 indicated a poor prognosis in patients with gastric cancer and might offer a promising therapeutic target for gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document