scholarly journals Stabilization of UCA1 by N6-methyladenosine RNA methylation modification promotes colorectal cancer progression

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rong-Zhang He ◽  
Jing Jiang ◽  
Xinglin Hu ◽  
Ming Lei ◽  
Jia Li ◽  
...  

Abstract Background UCA1 is frequently upregulated in a variety of cancers, including CRC, and it can play an oncogenic role by various mechanisms. However, how UCA1 is regulated in cancer is largely unknown. In this study, we aimed to determine whether RNA methylation at N6-methyladenosine (m6A) can impact UCA1 expression in colorectal cancer (CRC). Methods qRT-PCR was performed to detect the level of UCA1 and IGF2BP2 in CRC samples. CRISPR/Cas9 was employed to knockout (KO) UCA1, METTL3 and WTAP in DLD-1 and HCT-116 cells, while rescue experiments were carried out to re-express METTL3 and WTAP in KO cells. Immunoprecipitation using m6A antibody was performed to determine the m6A modification of UCA1. In vivo pulldown assays using S1m tagging combined with site-direct mutagenesis was carried out to confirm the recognition of m6A-modified UCA1 by IGF2BP2. Cell viability was measured by MTT and colony formation assays. The expression of UCA1 and IGF2BP2 in TCGA CRC database was obtained from GEPIA (http://gepia.cancer-pku.cn). Results Our results revealed that IGF2BP2 serves as a reader for m6A modified UCA1 and that adenosine at 1038 of UCA1 is critical to the recognition by IGF2BP2. Importantly, we showed that m6A writers, METTL3 and WTAP positively regulate UCA1 expression. Mechanically, IGF2BP2 increases the stability of m6A-modified UCA1. Clinically, IGF2BP2 is upregulated in CRC tissues compared with normal tissues. Conclusion These results suggest that m6A modification is an important factor contributing to upregulation of UCA1 in CRC tissues.

Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Yichao Hou ◽  
Xiaoling Weng ◽  
Wenjing Pang ◽  
Lidan Hou ◽  
...  

AbstractExploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis–mediated aerobic glycolysis pathway.


2021 ◽  
Vol 17 (10) ◽  
pp. 1939-1950
Author(s):  
Beibei Lin ◽  
Xuegu Xu ◽  
Xiaobi Zhang ◽  
Yinfei Yu ◽  
Xiaoling Wang

We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.


2019 ◽  
Vol 11 ◽  
pp. 175883591987897 ◽  
Author(s):  
Yi Jer Tan ◽  
Yeuan Ting Lee ◽  
Sven H. Petersen ◽  
Gurjeet Kaur ◽  
Koji Kono ◽  
...  

Background: This study aims to investigate the combination effect of a novel sirtuin inhibitor (BZD9L1) with 5-fluorouracil (5-FU) and to determine its molecular mechanism of action in colorectal cancer (CRC). Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested against CRC cells to evaluate synergism in cytotoxicity, senescence and formation of micronucleus, cell cycle and apoptosis, as well as the regulation of related molecular players. The effects of combined treatments at different doses on stress and apoptosis, migration, invasion and cell death mechanism were evaluated through two-dimensional and three-dimensional cultures. In vivo studies include investigation on the combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth and an evaluation of tumour proliferation and apoptosis using immunohistochemistry. Results: Combination treatments exerted synergistic reduction on cell viability on HCT 116 cells but not on HT-29 cells. Combined treatments reduced survival, induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT 116 cells through modulation of multiple responsible molecular players and apoptosis pathways, with no effect in epithelial mesenchymal transition (EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression levels differently and changed SIRT2 protein localization. Combined treatment reduced growth, migration, invasion and viability of HCT 116 spheroids through apoptosis, when compared with the single treatment. In addition, combined treatment was found to reduce tumour growth in vivo through reduction of tumour proliferation and necrosis compared with the vehicle control group. This highlights the potential therapeutic effects of BZD9L1 and 5-FU towards CRC. Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in improving the therapeutic efficacy for the treatment of colorectal cancer.


2020 ◽  
Vol 35 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Mingzhu Lin ◽  
Yinyan Li ◽  
Jianfeng Xian ◽  
Jinbin Chen ◽  
Yingyi Feng ◽  
...  

Objective: Abundant evidence has illustrated that long non-coding RNA (lncRNA) plays a vital role in the regulation of tumor development and progression. Ectopic expression of a novel lncRNA, termed lnc-AGER-1, has been discovered in cancers, and this lncRNA was reported to exert an anti-tumor effect. However, its biological mechanism remains unelucidated in colorectal cancer. Methods: A total of 159 paired colorectal cancer specimens and adjacent tissues was applied to detect the expression of lnc-AGER-1 by the quantitative Real-time PCR (qRT-PCR), and a series of functional assays was executed to uncover the role of this lncRNA on colorectal cancer. Results: We found that the expression of lnc-AGER-1 in the tumor tissues was significantly down-regulated, while compared with adjacent normal tissues (0.0115 ± 0.0718 vs. 0.0347 ± 0.157; P < 0.0001). Also, lnc-AGER-1 was observably associated with clinical T status (r = −0.184, P = 0.024). Patients with advanced T status exerted a significantly lower level of lnc-AGER-1 than those with early T status (20.0% vs. 40.7%, P = 0.021). Over-expression of lnc-AGER-1 inhibited cell proliferation and migration efficiency, and induced cell cycle arrest at the G0/G1 phase, and promoted cell apoptosis. Further research proved that lnc-AGER-1 altered the expression of its neighbor gene, AGER, through acting as a competing endogenous RNA for miR-182 in colorectal cancer. Conclusion: lnc-AGER-1 has a suppressive role in colorectal cancer development via modulating AGER, which may serve as a target for colorectal cancer diagnosis and treatment.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Longci Sun ◽  
Hanbing Xue ◽  
Chunhui Jiang ◽  
Hong Zhou ◽  
Lei Gu ◽  
...  

This article aims to find the key long non-coding RNAs (LncRNAs) associated with colorectal cancer (CRC) and to study its biological functions in colorectal cancer progression. Our study has shown that upregulated LncRNA DQ786243 can regulate cell proliferation, cell cycle progression, cell apoptosis, migration, and invasion in CRC cells. Xenograft experiments confirmed that the growth of xenograft tumors formed by CRC cells was suppressed after silencing LncRNA DQ786243 expression. In conclusion, our study suggests that LncRNA DQ786243 is an oncogene that promotes tumor progression and leads us to propose that LncRNAs may serve as key regulatory hubs in CRC progression.


Author(s):  
Xinyang Lu ◽  
Zhiqiang Liu ◽  
Xiaofei Ning ◽  
Lunhua Huang ◽  
Biao Jiang

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Dan Zhang ◽  
Xiaofang Xiao ◽  
Daqiang Song ◽  
Siwei Chen ◽  
Zhuo Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ning Wang ◽  
Jun Li ◽  
Ju He ◽  
Yong-Guang Jing ◽  
Wei-dong Zhao ◽  
...  

Great concerns have raised crucial roles of long noncoding RNAs (lncRNAs) on colorectal cancer progression due to the increasing number of studies in cancer development. Previous studies reveal that lncRNA CCAT1 plays an important role in the progression of a variety of cancers. However, the role of lncRNA CCAT1 in colorectal cancer is still unclear. In this study, we found that in both colorectal tissues and cell lines the level of lncRNA CCAT1 was increased. Downregulation of lncRNA CCAT1 inhibited the proliferation, migration, and invasion of colorectal cell lines and promoted apoptosis. We then found that hsa-miR-4679 could bind to lncRNA CCAT1 directly, and with further functional analyses, we confirmed that lncRNA CCAT1 sponged hsa-miR-4679 to promote the progression of colorectal cancer. Next, we found that hsa-miR-4679 was directly bound to 3 ′ UTR of GNG10 (guanine nucleotide-binding protein, gamma 10). GNG10 overexpression promoted the progression of colorectal cancer, and this phenotype could be reversed by miR-4679 mimics. At last, we knocked down CCAT1 in vivo and found that sh-CCAT1 reduced the tumor size and the number of proliferating cells. In summary, our findings revealed that lncRNA CCAT1 facilitated colorectal cancer progression via the hsa-miR-4679/GNG10 axis and provided new potential therapeutic targets for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document