scholarly journals Hydrogen Sulfide: A Robust Combatant against Abiotic Stresses in Plants

Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 319-342
Author(s):  
Kanika Khanna ◽  
Nandni Sharma ◽  
Sandeep Kour ◽  
Mohd. Ali ◽  
Puja Ohri ◽  
...  

Hydrogen sulfide (H2S) is predominantly considered as a gaseous transmitter or signaling molecule in plants. It has been known as a crucial player during various plant cellular and physiological processes and has been gaining unprecedented attention from researchers since decades. They regulate growth and plethora of plant developmental processes such as germination, senescence, defense, and maturation in plants. Owing to its gaseous state, they are effectively diffused towards different parts of the cell to counterbalance the antioxidant pools as well as providing sulfur to cells. H2S participates actively during abiotic stresses and enhances plant tolerance towards adverse conditions by regulation of the antioxidative defense system, oxidative stress signaling, metal transport, Na+/K+ homeostasis, etc. They also maintain H2S-Cys-cycle during abiotic stressed conditions followed by post-translational modifications of cysteine residues. Besides their role during abiotic stresses, crosstalk of H2S with other biomolecules such as NO and phytohormones (abscisic acid, salicylic acid, melatonin, ethylene, etc.) have also been explored in plant signaling. These processes also mediate protein post-translational modifications of cysteine residues. We have mainly highlighted all these biological functions along with proposing novel relevant issues that are required to be addressed further in the near future. Moreover, we have also proposed the possible mechanisms of H2S actions in mediating redox-dependent mechanisms in plant physiology.

Author(s):  
Priyanka Singh ◽  
Yamshi Arif ◽  
Andrzej Bajguz ◽  
Shamsul Hayat

Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is a special subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin’s role in increasing several physiological and biochemical processes in under stress and non-stress environments. Additionally, this review briefly assesses quercetin’s role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin’s role in plant signaling are also discussed.


Author(s):  
Faiçal Brini ◽  
Walid Saibi ◽  
Faiçal Brini

Proline is known to play diverse functions in plants. Some aspects of its biological functions are still unclear. This review highlights some cases in the proline, structure, metabolism, functions in development and also its involvement in salt tolerance process in planta. Indeed, we report the clever roles of proline in cellular homeostasis, including redox balance and their implication as effector during some causal enzymological and physiological processes. Furthermore, the proline functions under abiotic stresses are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses, especially salinity. Eventually, we note that the purpose through this review is to provide a rich, concise and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on proline in soil-plant systems.


2022 ◽  
Vol 12 ◽  
Author(s):  
Cleverson C. Matiolli ◽  
Rafael Cavém Soares ◽  
Hugo L. S. Alves ◽  
Isabel A. Abreu

Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 605 ◽  
Author(s):  
Yandong Yao ◽  
Yan Yang ◽  
Changxia Li ◽  
Dengjing Huang ◽  
Jing Zhang ◽  
...  

Abiotic stress is one of the major threats affecting plant growth and production. The harm of abiotic stresses includes the disruption of cellular redox homeostasis, reactive oxygen species (ROS) production, and oxidative stress in the plant. Plants have different mechanisms to fight stress, and these mechanisms are responsible for maintaining the required homeostasis in plants. Recently, the study of gasotransmitters in plants has attracted much attention, especially for abiotic stress. In the present review, abiotic stressors were mostly found to induce gasotransmitter production in plants. Meanwhile, these gasotransmitters can enhance the activity of several antioxidant enzymes, alleviate the harmfulness of ROS, and enhance plant tolerance under various stress conditions. In addition, we introduced the interaction of gasotransmitters in plants under abiotic stress. With their promising applications in agriculture, gasotransmitters will be adopted in the near future.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhuping Jin ◽  
Yanxi Pei

Recently, overwhelming evidence has proven that hydrogen sulfide (H2S), which was identified as a gasotransmitter in animals, plays important roles in diverse physiological processes in plants as well. With the discovery and systematic classification of the enzymes producing H2Sin vivo, a better understanding of the mechanisms by which H2S influences plant responses to various stimuli was reached. There are many functions of H2S, including the modulation of defense responses and plant growth and development, as well as the regulation of senescence and maturation. Additionally, mounting evidence indicates that H2S signaling interacts with plant hormones, hydrogen peroxide, nitric oxide, carbon monoxide, and other molecules in signaling pathways.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Aditya Banerjee ◽  
Aryadeep Roychoudhury

WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of theWRKYgenes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.


2022 ◽  
Vol 23 (2) ◽  
pp. 702
Author(s):  
Shuya Tan ◽  
Jie Cao ◽  
Xinli Xia ◽  
Zhonghai Li

Priming is an adaptive strategy that improves plant defenses against biotic and abiotic stresses. Stimuli from chemicals, abiotic cues, and pathogens can trigger the establishment of priming state. Priming with 5-aminolevulinic acid (ALA), a potential plant growth regulator, can enhance plant tolerance to the subsequent abiotic stresses, including salinity, drought, heat, cold, and UV-B. However, the molecular mechanisms underlying the remarkable effects of ALA priming on plant physiology remain to be elucidated. Here, we summarize recent progress made in the stress tolerance conferred by ALA priming in plants and provide the underlying molecular and physiology mechanisms of this phenomenon. Priming with ALA results in changes at the physiological, transcriptional, metabolic, and epigenetic levels, and enhances photosynthesis and antioxidant capacity, as well as nitrogen assimilation, which in turn increases the resistance of abiotic stresses. However, the signaling pathway of ALA, including receptors as well as key components, is currently unknown, which hinders the deeper understanding of the defense priming caused by ALA. In the future, there is an urgent need to reveal the molecular mechanisms by which ALA regulates plant development and enhances plant defense with the help of forward genetics, multi-omics technologies, as well as genome editing technology.


2021 ◽  
Author(s):  
liang xu ◽  
Jia-Qian Song ◽  
yuelin wang ◽  
Xiao-Han Liu ◽  
Xue-Li Li ◽  
...  

Abstract Plants have evolved a lot of strategies to improve salt tolerance to cope with salt stress. Recent studies have suggested that thymol (a nature medicine) enhances the plant tolerance against abiotic stresses, but the mechanisms are rarely known. Here, we found that thymol played an important role in maintaining root growth under salt stress. Thymol rescued root growth from salt stress via ameliorating ROS (reactive oxygen species) accumulation, lipid peroxidation, and cell death. In addition, thymol enhanced the level of NO (nitric oxide) and GSH (glutathione) to repress ROS accumulation, further protecting the stability of cell membrane. Thymol-induced Na+ efflux in roots and leaves under salt stress may depend on the upregulation of SOS1, HKT1 and NHX1. Consequently, all of these evidences suggested that thymol improved tobacco salt tolerance via enhancing NO and GSH content as well as inducing Na+ efflux.


Author(s):  
Michael Pluth

: Hydrogen sulfide (H2S) is an important biomolecule that plays key signaling and protective roles in different physiological processes. With the goals of advancing both the available research tools and the associated therapeutic potential of H2S, researchers have developed different methods to deliver H2S on-demand in different biological contexts. A recent approach to develop such donors has been to design compounds that release carbonyl sulfide (COS), which is quickly converted to H2S in biological systems by the ubiquitous enzyme carbonic anhydrase (CA). Although highly diversifiable, many approaches using this general platform release quinone methides or related electrophiles after donor activation. Many such electrophiles are likely scavenged by water, but recent efforts have also expanded alternative approaches that minimize the formation of electrophilic byproducts generated after COS release. This mini-review focuses specifically on recent examples of COS-based H2S donors that do not generate quinone methide byproducts after donor activation.


Sign in / Sign up

Export Citation Format

Share Document