scholarly journals A Novel Net Weighting Algorithm for Power and Timing-Driven Placement

VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed Chentouf ◽  
Zine El Abidine Alaoui Ismaili

Nowadays, many new low power ASICs applications have emerged. This new market trend made the designer’s task of meeting the timing and routability requirements within the power budget more challenging. One of the major sources of power consumption in modern integrated circuits (ICs) is the Interconnect. In this paper, we present a novel Power and Timing-Driven global Placement (PTDP) algorithm. Its principle is to wrap a commercial timing-driven placer with a nets weighting mechanism to calculate the nets weights based on their timing and power consumption. The new calculated weight is used to drive the placement engine to place the cells connected by the critical power or timing nets close to each other and hence reduce the parasitic capacitances of the interconnects and, by consequence, improve the timing and power consumption of the design. This approach not only improves the design power consumption but facilitates also the routability with only a minor impact on the timing closure of a few designs. The experiments carried on 40 industrial designs of different nodes, sizes, and complexities and demonstrate that the proposed algorithm is able to achieve significant improvements on Quality of Results (QoR) compared with a commercial timing driven placement flow. We effectively reduce the interconnect power by an average of 11.5% that leads to a total power improvement of 5.4%, a timing improvement of 9.4%, 13.7%, and of 3.2% in Worst Negative Slack (WNS), Total Negative Slack (TNS), and total wirelength reduction, respectively.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Farzin Azami ◽  
Seyed Mostafa Safavi Hemami ◽  
Abbas Akbarpour-Kasgari

Two-way relay networks (TWRN) have been intensively investigated over the past decade due to their ability to enhance the performance assessment of networks in terms of cellular coverage and spectral efficiency. Yet, power control in such systems is a nontrivial issue, particularly in multirelay networks where relays are deployed to ensure a required Quality of Service (QoS). In this paper, we envision to address this critical issue by minimizing the sum-power with respect to per-node power consumption and acceptable users’ rates. To tackle this, we employ a variable transformation to turn the fractional quadratically constrained quadratic problem (QCQP) into semidefinite programming (SDP). This algorithm is also extended to a distributed format. Simulation results of deploying 10 relay stations reveal that the total power consumption will decrease to approximately 8 dBW for 6 bps/Hz sum-rate.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8477
Author(s):  
Guido Rossetto Rossetto Moraes ◽  
Valentin Ilea ◽  
Alberto Berizzi ◽  
Cosimo Pisani ◽  
Giorgio Giannuzzi ◽  
...  

This paper proposes a novel methodology to estimate equivalent inertia of an area, observed from its boundary buses where Phasor Measurement Units (PMUs) are assumed to be installed. The areas are divided according to the measurement points, and the methodology proposed can obtain the equivalent dynamic response of the area dependent of or independent of coherency of the generators inside, which is the first contribution of this paper. The methodology is divided in three parts: estimating the frequency response, estimating the power imbalance and estimating inertia through the solution of the swing equation by Least-Squares Method (LSM). The estimation of the power imbalance is the second contribution of this paper, enabling the study of areas that contain perturbations and attending the limitation of methods of the literature that rely on assumptions of slow mechanical power. It can be further divided in three steps: accounting the total power injected, estimating an equivalent load behavior and estimating an equivalent mechanical power. The quality of results is proved with test systems of different sizes, simulating different types of perturbations.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


2019 ◽  
Vol 2019 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jérémie Gerhardt ◽  
Michael E. Miller ◽  
Hyunjin Yoo ◽  
Tara Akhavan

In this paper we discuss a model to estimate the power consumption and lifetime (LT) of an OLED display based on its pixel value and the brightness setting of the screen (scbr). This model is used to illustrate the effect of OLED aging on display color characteristics. Model parameters are based on power consumption measurement of a given display for a number of pixel and scbr combinations. OLED LT is often given for the most stressful display operating situation, i.e. white image at maximum scbr, but having the ability to predict the LT for other configurations can be meaningful to estimate the impact and quality of new image processing algorithms. After explaining our model we present a use case to illustrate how we use it to evaluate the impact of an image processing algorithm for brightness adaptation.


Author(s):  
Pei Y. Tsai ◽  
Junedong Lee ◽  
Paul Ronsheim ◽  
Lindsay Burns ◽  
Richard Murphy ◽  
...  

Abstract A stringent sampling plan is developed to monitor and improve the quality of 300mm SOI (silicon on insulator) starting wafers procured from the suppliers. The ultimate goal is to obtain the defect free wafers for device fabrication and increase yield and circuit performance of the semiconductor integrated circuits. This paper presents various characterization techniques for QC monitor and examples of the typical defects attributed to wafer manufacturing processes.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


2015 ◽  
Vol 43 (1) ◽  
pp. 399-411 ◽  
Author(s):  
Michael Ringenburg ◽  
Adrian Sampson ◽  
Isaac Ackerman ◽  
Luis Ceze ◽  
Dan Grossman
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahmoud Fatouh ◽  
Ayowande A. McCunn

Purpose This paper aims to present a model of shareholders’ willingness to exert effort to reduce the likelihood of bank distress and the implications of the presence of contingent convertible (CoCo) bonds in the liabilities structure of a bank. Design/methodology/approach This study presents a basic model about the moral hazard surrounding shareholders willingness to exert effort that increases the likelihood of a bank’s success. This study uses a one-shot game and so do not capture the effects of repeated interactions. Findings Consistent with the existing literature, this study shows that the direction of the wealth transfer at the conversion of CoCo bonds determines their impact on shareholder risk-taking incentives. This study also finds that “anytime” CoCos (CoCo bonds trigger-able anytime at the discretion of managers) have a minor advantage over regular CoCo bonds, and that quality of capital requirements can reduce the risk-taking incentives of shareholders. Practical implications This study argues that shareholders can also use manager-specific CoCo bonds to reduce the riskiness of the bank activities. The issuance of such bonds can increase the resilience of individual banks and the whole banking system. Regulators can use restrictions on conversion rates and/or requirements on the quality of capital to address the impact of CoCo bonds issuance on risk-taking incentives. Originality/value To model the risk-taking incentives, authors generally modify the asset processes to introduce components that reflect asymmetric information between CoCo holders and shareholders and/or managers. This paper follows a simpler method similar to that of Holmström and Tirole (1998).


Sign in / Sign up

Export Citation Format

Share Document