scholarly journals A new process for creating a solid‐phase sintered body using a unique densification process between powders

Author(s):  
Toshihiro Ishikawa ◽  
Makio Naito
1992 ◽  
Vol 280 ◽  
Author(s):  
Michael A. Parker ◽  
T. L. Hylton ◽  
K. R. Coffey ◽  
J. K. Howard

ABSTRACTA new process for the crystallization of amorphous films on chemically dissimilar substrates, solid phase heteroepitaxy (SPHE), is described. Unlike SPE in Si, it is found that the kinetics can be modeled by nucleation and multi-dimensional growth with Johnson-Mehl kinetics modified for the effects of a finite film thickness and nucleation initiated at the interface with the substrate.


2020 ◽  
Author(s):  
James Owen

<p>Snow-lines are thought to play a vital role in the evolution of protoplanetary discs and planet formation at all scales. Snow-lines occur in regions of the protoplanetary discs where the temperature reaches the sublimation temperature and volatiles transition from the solid phase to the vapour phase (or vice-versa). However, in the outer region of protoplanetary discs (beyond a few AU), the temperature is set by the distribution of solids and their ability to absorb stellar light. Thus, the thermodynamics of the disc and the volatile phases are inextricably linked. In this talk, I will show this coupling is thermally unstable, and snow-lines continually evolve in regions of the disc that are marginally optically thick. Patches of the disc proceeding through a limit cycle, where volatiles in a region of the disc continually condense and then sublimate. Using numerical simulations of the CO snow-line I will show it can move 10s AU over 10,000 years, repeatedly. I will use these simulations to discuss how this new process may effect measured Carbon abundances, solid evolution and ultimately planet formation, making connections to high-resolution images of protoplanetary discs. </p>


1996 ◽  
Vol 424 ◽  
Author(s):  
Dong Kyun Sohn ◽  
Dae Gyu Moon ◽  
Byung Tae Ahn

AbstractLow-temperature crystallization of amorphous Si (a-Si) films was investigated by adsorbing copper ions on the surface of the films. The copper ions were adsorbed by spincoating of Cu solution. This new process lowered the crystallization temperature and reduced crystallization time of a-Si films. For 1000 ppm solution, the a-Si film was partly crystallized down to 500°C in 20 h and almost completely crystallized at 530°C in 20 h. The adsorbed Cu on the surface acted as a seed of crystalline and caused fractal growth. The fractal size was varied from 10 to 200 prm, depending on the Cu concentration in solution. But the grain size of the films was about 400 nm, which was similar to that of intrinsic films crystallized at 600°C.


2016 ◽  
Vol 192 ◽  
pp. 59-83 ◽  
Author(s):  
Daniel Sutter ◽  
Matteo Gazzani ◽  
Marco Mazzotti

A new ammonia-based process for CO2capture from flue gas has been developed, which utilizes the formation of solid ammonium bicarbonate to increase the CO2concentration in the regeneration section of the process. Precipitation, separation, and dissolution of the solid phase are realized in a dedicated process section, while the packed absorption and desorption columns remain free of solids. Additionally, the CO2wash section applies solid formation to enable a reduction of the wash water consumption. A rigorous performance assessment employing the SPECCA index (Specific Primary Energy Consumption for CO2Avoided) has been implemented to allow for a comparison of the overall energy penalty between the new process and a standard ammonia-based capture process without solid formation. A thorough understanding of the relevant solid–solid–liquid–vapor phase equilibria and an accurate modeling of them have enabled the synthesis of the process, and have inspired the development of the optimization algorithm used to screen a wide range of operating conditions in equilibrium-based process simulations. Under the assumptions on which the analysis is based, the new process with controlled solid formation achieved a SPECCA of 2.43 MJ kgCO2−1, corresponding to a reduction of 17% compared to the process without solid formation (with a SPECCA of 2.93 MJ kgCO2−1). Ways forward to confirm this significant improvement, and to increase the accuracy of the optimization are also discussed.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
Charles D. Humphrey ◽  
E. H. Cook ◽  
Karen A. McCaustland ◽  
Daniel W. Bradley

Enterically transmitted non-A, non-B hepatitis (ET-NANBH) is a type of hepatitis which is increasingly becoming a significant world health concern. As with hepatitis A virus (HAV), spread is by the fecal-oral mode of transmission. Until recently, the etiologic agent had not been isolated and identified. We have succeeded in the isolation and preliminary characterization of this virus and demonstrating that this agent can cause hepatic disease and seroconversion in experimental primates. Our characterization of this virus was facilitated by immune (IEM) and solid phase immune electron microscopic (SPIEM) methodologies.Many immune electron microscopy methodologies have been used for morphological identification and characterization of viruses. We have previously reported a highly effective solid phase immune electron microscopy procedure which facilitated identification of hepatitis A virus (HAV) in crude cell culture extracts. More recently we have reported utilization of the method for identification of an etiologic agent responsible for (ET-NANBH).


Author(s):  
C.D. Humphrey ◽  
T.L. Cromeans ◽  
E.H. Cook ◽  
D.W. Bradley

There is a variety of methods available for the rapid detection and identification of viruses by electron microscopy as described in several reviews. The predominant techniques are classified as direct electron microscopy (DEM), immune electron microscopy (IEM), liquid phase immune electron microscopy (LPIEM) and solid phase immune electron microscopy (SPIEM). Each technique has inherent strengths and weaknesses. However, in recent years, the most progress for identifying viruses has been realized by the utilization of SPIEM.


Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Sign in / Sign up

Export Citation Format

Share Document