Effects of artificial defoliation on reproductive allocation in the common vetch,Vicia sativa(Fabaceae: Papilionoideae)

1996 ◽  
Vol 83 (7) ◽  
pp. 886-889 ◽  
Author(s):  
Suzanne Koptur ◽  
Claire L. Smith ◽  
John. H. Lawton
2021 ◽  
Author(s):  
Kenta Shirasawa ◽  
Shunichi Kosugi ◽  
Kazuhiro Sasaki ◽  
Andrea Ghelfi ◽  
Koei Okazaki ◽  
...  

AbstractWild plants are often tolerant to biotic and abiotic stresses in their natural environments, whereas domesticated plants such as crops frequently lack such resilience. This difference is thought to be due to the high levels of genome heterozygosity in wild plant populations and the low levels of heterozygosity in domesticated crop species. In this study, common vetch (Vicia sativa) was used as a model to examine this hypothesis. The common vetch genome (2n = 14) was estimated as 1.8 Gb in size. Genome sequencing produced a reference assembly that spanned 1.5 Gb, from which 31,146 genes were predicted. Using this sequence as a reference, 24,118 single nucleotide polymorphisms were discovered in 1,243 plants from 12 natural common vetch populations in Japan. Common vetch genomes exhibited high heterozygosity at the population level, with lower levels of heterozygosity observed at specific genome regions. Such patterns of heterozygosity are thought to be essential for adaptation to different environments. These findings suggest that high heterozygosity at the population level would be required for wild plants to survive under natural conditions while allowing important gene loci to be fixed to adapt the conditions. The resources generated in this study will provide insights into de novo domestication of wild plants and agricultural enhancement.HighlightSequence analysis of the common vetch (Vicia sativa) genome and SNP genotyping across natural populations revealed nucleotide diversity levels associated with native population environments.


1997 ◽  
Vol 15 (3) ◽  
pp. 149-152
Author(s):  
Jeffrey G. Norcini ◽  
James H. Aldrich ◽  
Frank G. Martin

Abstract Preemergence applied herbicides, Barricade 65 WDG (prodiamine), Derby 5G (metolachlor + simazine), Pendulum 60 WDG (pendimethalin), Snapshot DF (isoxaben + oryzalin), and Snapshot TG (isoxaben + trifluralin) were evaluated for control of common vetch (Vicia sativa L.) and black medic (Medicago lupulina L.) in 2.5 liter (0.7 gal) containerized soilless medium. Herbicides were applied at label rates in November 1993 (experiment 1) and 1994 (experiment 2). Common vetch was controlled up to 16 weeks after treatment (WAT) by both Snapshot formulations. Pendulum and Barricade, or Derby provided excellent and good control of vetch for 8 WAT (experiment 1), respectively, but only 4 WAT in experiment 2. Both Snapshot formulations resulted in excellent control of black medic for the entirety of both experiments. Pendulum provided excellent control up to 12 WAT (experiment 2) and good control up to 16 WAT (experiment 1). Further studies should evaluate the turfgrass/landscape herbicide Gallery (isoxaben), the common active ingredient in both Snapshot formulations.


2011 ◽  
Vol 51 (No. 2) ◽  
pp. 51-56 ◽  
Author(s):  
A. Orak ◽  
E. Ateş

This research was carried out in the Field Crop Department, Tekirda Agriculture Faculty, and Plant Breeding Application and Research Centre, Trakya University, Turkey. The response of common vetch (Vicia sativa L.) seedlings to salt and available water level tolerance were compared for its water retention capability and the dry matter of shoots, root and shoot weights after 2 h incubation at 30°C and 1 h incubation at 105°C under the conditions of absence, as well as the presence of various levels of salinity and available water. Germination was not affected by the salinity and available water treatments. 1.35 dS/m salinity water treatment resulted in increasing the fresh weights of its shoot (1.179 g) and root (0.580 g), weights after 2 h incubation at 30°C (shoot: 0.0456 and root: 0.0325 g) and 1 h incubation at 105°C (shoot: 0.0104 g and root: 0.0073 g), water retention capability (0.0123 g) and dry matter (0.0236 g) of the shoot in seedlings. The highest fresh weight (root: 0.567 g and shoot: 1.113 g) and water retention capability (0.0112 g) were determined from capacity of the field.


2002 ◽  
Vol 105 (1) ◽  
pp. 58-67 ◽  
Author(s):  
E. Potokina ◽  
F. Blattner ◽  
T. Alexandrova ◽  
K. Bachmann

Author(s):  
Rui Dong ◽  
Zhongjie Lu ◽  
Zhengyu Yang ◽  
Yanrong Wang ◽  
Chao Chen

Abstract Common vetch (Vicia sativa) is an important forage and green manure crop that is widely cultivated around the world. However, the large number of subspecies and accessions of common vetch has made taxonomic research on this species difficult. Pollen morphology data can provide important evidence in the study of plant phylogeny. Therefore, in this research, light microscopy and scanning electron microscopy were used to observe seven morphological traits of pollens from 22 common vetch accessions, and residual maximum likelihood and pattern analysis was conducted. The results showed that the pollen grains of the 22 accessions were all monad pollen and the polar view revealed three-lobed circular and triangular shapes, while the equatorial view mainly revealed an oblate shape; only one accession showed an oblate spherical shape. All accessions were 3-zonocolporate and the colpus length extended close to the poles. The polar axis length was (19.39 ± 0.97)–(42.12 ± 0.76) μm and the equatorial axis length was (35.97 ± 1.27)–(45.25 ± 0.81) μm. We found that qualitative traits of pollen shape, aperture polar view and ornamentation were highly stable. Among them, polar axis length, equatorial axis length and colpus length and width had significant differences among the accessions. The ratios of the equatorial and polar axes had significant differences among the subspecies. This trait information could be used for the classification and identification of common vetch accessions and subspecies.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 738
Author(s):  
Eva María Córdoba ◽  
Mónica Fernández-Aparicio ◽  
Clara Isabel González-Verdejo ◽  
Carmela López-Grau ◽  
María del Valle Muñoz-Muñoz ◽  
...  

The dodders (Cuscuta spp.) are parasitic plants that feed on the stems of their host plants. Cuscuta campestris is one of the most damaging parasitic plants for the worldwide agricultural production of broad-leaved crops. Its control is limited or non-existent, therefore resistance breeding is the best alternative both economically and environmentally. Common vetch (Vicia sativa) and bitter vetch (Vicia ervilia) are highly susceptible to C. campestris, but no resistant genotypes have been identified. Thus, the aim of this study was to identify in V. sativa and V.ervilia germplasm collections genotypes resistant to C. campestris infection for use in combating this parasitic plant. Three greenhouse screening were conducted to: (1) identify resistant responses in a collection of 154 accessions of bitter vetch and a collection of 135 accessions of common vetch genotypes against infection of C. campestris; (2) confirm the resistant response identified in common vetch accessions; and (3) characterize the effect of C. campestris infection on biomass of V. sativa resistant and susceptible accessions. Most common vetch and bitter vetch genotypes tested were susceptible to C. campestris. However, the V. sativa genotype Vs.1 exhibited high resistance. The resistant phenotype was characterized by a delay in the development of C. campestris posthaustorial growth and a darkening resembling a hypersensitive-like response at the penetration site. The resistant mechanism was effective in limiting the growth of C. campestris as the ratio of parasite/host shoot dry biomass was more significantly reduced than the rest of the accessions. To the best or our knowledge, this is the first identification of Cuscuta resistance in V. sativa genotypes.


Author(s):  
Junjie Zhang ◽  
Shanshan Peng ◽  
Mitchell Andrews ◽  
Chunzeng Liu ◽  
Yimin Shang ◽  
...  

Three fast-growing rhizobial strains isolated from effective nodules of common vetch (Vicia sativa L.) were characterized using a polyphasic approach. All three strains were assigned to the genus Rhizobium on the basis of the results of 16S rRNA gene sequence analysis. Phylogenetic analysis based on concatenated atpD-recA genes separated the strains into a distinct lineage represented by WYCCWR 11279T, which showed average nucleotide identity values of 95.40 and 93.61 % with the most similar phylogenetic type strains of Rhizobium sophorae CCBAU 03386T and Rhizobium laguerreae FB TT, respectively. The digital DNA–DNA hybridization relatedness values between WYCCWR 11279T and the closest related type strains were less than 70 %. Therefore, a novel rhizobial species is proposed, Rhizobium changzhiense sp. nov., and strain WYCCWR 11279T (=HAMBI 3709T=LMG 31534T) is designated as the type strain for the novel species.


2021 ◽  
Vol 16 (1) ◽  
pp. 1111-1121
Author(s):  
Yongqun Zhu ◽  
Qiuxu Liu ◽  
Wenzhi Xu ◽  
Li Yao ◽  
Xie Wang ◽  
...  

Abstract Drought is among the most important natural disasters with severe effects on animals and plants. MicroRNAs are a class of noncoding RNAs that play a crucial role in plant growth, development, and response to stress factors, including drought. However, the microRNAs in drought responses in common vetch (Vicia sativa), an annual herbaceous leguminous plant commonly used for forage by including it in mixed seeding during winter and spring, have not been characterized. To explore the microRNAs’ response to drought in common vetch, we sequenced 10 small RNA (sRNA) libraries by the next-generation sequencing technology. We obtained 379 known miRNAs belonging to 38 families and 47 novel miRNAs. The two groups had varying numbers of differentially expressed miRNAs: 85 in the comparison group D5 vs C5 and 38 in the comparison group D3 vs C3. Combined analysis of mRNA and miRNA in the same samples under drought treatment identified 318 different target genes of 123 miRNAs. Functional annotation of the target genes revealed that the miRNAs regulate drought-responsive genes, such as leucine-rich repeat receptor-like kinase-encoding genes (LRR-RLKs), ABC transporter G family member 1 (ABCG1), and MAG2-interacting protein 2 (MIP2). The genes were involved in various pathways, including cell wall biosynthesis, reactive oxygen removal, and protein transport. The findings in this study provide new insights into the miRNA-mediated regulatory networks of drought stress response in common vetch.


Sign in / Sign up

Export Citation Format

Share Document