scholarly journals Emerging role of oxidative stress in metabolic syndrome and cardiovascular diseases: important role of Rac/NADPH oxidase

2013 ◽  
Vol 231 (3) ◽  
pp. 290-300 ◽  
Author(s):  
Mohammad T Elnakish ◽  
Hamdy H Hassanain ◽  
Paul M Janssen ◽  
Mark G Angelos ◽  
Mahmood Khan

2008 ◽  
Vol 114 (3) ◽  
pp. 173-182 ◽  
Author(s):  
Gorka San José ◽  
Ana Fortuño ◽  
Óscar Beloqui ◽  
Javier Díez ◽  
Guillermo Zalba

Oxidative stress plays a key role in the pathophysiology of several major cardiovascular diseases, including atherosclerosis, hypertension, heart failure, stroke and diabetes. ROS (reactive oxygen species) affect multiple tissues either directly or through NO depletion. ROS induce cardiovascular dysfunction by modulating cell contraction/dilation, migration, growth/apoptosis and extracellular matrix protein turnover, which contribute to vascular and cardiac remodelling. Of the several sources of ROS within the cardiovascular system, a family of multisubunit NADPH oxidases appears to be a predominant contributor of superoxide anion. Recent findings suggest a significant role of the genetic background in NADPH oxidase regulation. Common genetic polymorphisms within the promoter and exonic sequences of CYBA, the gene that encodes the p22phox subunit of NADPH oxidase, have been characterized in the context of cardiovascular diseases. This review aims to present the current state of research into these polymorphisms in their relationship to cardiovascular diseases.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Behnam Kargar ◽  
Zahra Zamanian ◽  
Majid Bagheri Hosseinabadi ◽  
Vahid Gharibi ◽  
Mohammad Sanyar Moradi ◽  
...  

Abstract Background Understanding the causes and risk factors of metabolic syndrome is important for promoting population health. Oxidative stress has been associated with metabolic syndrome, and also obstructive sleep apnea. These are two diseases which have common prognostic characteristics for heart disease. The aim of this study was to examine the role of oxidative stress in the concurrent presence of metabolic syndrome and obstructive sleep apnea in a working population. Methods Participants were 163 artisan bakers in Shahroud, Iran, routinely exposed to significant heat stress and other oxidative stress indicators on a daily basis as part of their work. Using a cross-sectional design, data relevant to determining metabolic syndrome status according to International Diabetes Federation criteria, and the presence of obstructive sleep apnea according to the STOP-Bang score, was collected. Analyses included hierarchical binary logistic regression to yield predictors of the two diseases. Results Hierarchical binary logistic regression showed that oxidative stress – alongside obesity, no regular exercise, and smoking – was an independent predictor of metabolic syndrome, but not obstructive sleep apnea. Participants who were obese were 28 times more likely to have metabolic syndrome (OR 28.59, 95% CI 4.91–63.02) and 44 times more likely to have obstructive sleep apnea (OR 44.48, 95% CI 4.91–403.28). Participants meeting metabolic syndrome criteria had significantly higher levels of malondialdehyde (p <  0.05) than those who did not. No difference in oxidative stress index levels were found according to obstructive sleep apnea status. Conclusions Our findings suggest that oxidative stress contributes to the onset of metabolic syndrome, and that obstructive sleep apnea is involved in oxidative stress. Whilst obesity, exercise, and smoking remain important targets for reducing the incidence of metabolic syndrome and obstructive sleep apnea, policies to control risks of prolonged exposure to oxidative stress are also relevant in occupations where such environmental conditions exist.



Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 377
Author(s):  
Yunna Lee ◽  
Eunok Im

Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.



2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sunil Joshi ◽  
Ammon B. Peck ◽  
Saeed R. Khan

A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.



2021 ◽  
Author(s):  
Behnam KARGAR ◽  
Zahra ZAMANIAN ◽  
Majid Bagheri HOSSEINABADI ◽  
Vahid Gharibi ◽  
Mohammad Sanyar MORADI ◽  
...  

Abstract Background: Understanding the causes and risk factors of metabolic syndrome is important for promoting population health. Oxidative stress has been associated with metabolic syndrome, and also obstructive sleep apnea. These are two diseases which have common prognostic characteristics for heart disease. The aim of this study was to examine the role of oxidative stress in the concurrent presence of metabolic syndrome and obstructive sleep apnea in a working population. Methods: Participants were 163 artisan bakers in Shahroud, Iran, routinely exposed to oxidative stress indicators on a daily basis as part of their work. Using a cross-sectional design, data relevant to determining metabolic syndrome status according to International Diabetes Federation criteria, and the presence of obstructive sleep apnea according to the STOP-Bang score, was collected. Analyses included hierarchical binary logistic regression to yield predictors of the two diseases. Results: Logistic regression showed that oxidative stress – alongside obesity, no regular exercise, and smoking – was an independent predictor of metabolic syndrome, but not obstructive sleep apnea. Participants who were obese were 28 times more likely to have metabolic syndrome (OR 28.59, 95% CI 4.91-63.02) and 44 times more likely to have obstructive sleep apnea (OR 44.48, 95% CI 4.91-403.28). Participants meeting metabolic syndrome criteria had significantly higher levels of malondialdehyde (p < 0.05) than those who did not. No difference in oxidative stress index levels were found according to obstructive sleep apnea status. Conclusions: Our findings suggest that oxidative stress contributes to the onset of metabolic syndrome, and that obstructive sleep apnea is involved in oxidative stress. Whilst obesity, exercise, and smoking remain important targets for reducing the incidence of metabolic syndrome and obstructive sleep apnea, policies to control risks of prolonged exposure to oxidative stress are also relevant in occupations where such environmental conditions exist.



2015 ◽  
Vol 129 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Andreia Z. Chignalia ◽  
Maria Aparecida Oliveira ◽  
Victor Debbas ◽  
Randal O. Dull ◽  
Francisco R.M. Laurindo ◽  
...  

Testosterone triggers leucocyte migration and oxidative stress, important features in inflammation and in the development of cardiovascular diseases. The mechanisms by which testosterone increase cardiovascular risk are unknown. We describe one pathway whereby testosterone can potentially contribute to vascular disease.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nicolás F. Renna ◽  
Emiliano R. Diez ◽  
Carina Lembo ◽  
Roberto M. Miatello

The objective of this work was to demonstrate the role of COX-2 enzyme at the vascular in experimental model of metabolic syndrome. SHR male WKY rats were employed; they were distributed in 8 groups (n=8each): control (W); W + L: WKY rats receiving 20 mg/kg of lumiracoxib by intraesophageal administration; SHR; SHR + L: SHR + 20 mg/kg of lumiracoxib by intraesophageal administration; Fructose-Fed Rats (FFR): WKY rats receiving 10% (w/v) fructose solution in drinking water during all 12 weeks; FFR + L: FFR + 20 mg/kg of lumiracoxib by intraesophageal administration; Fructose-Fed Hypertensive Rats (FFHR): SHR receiving 10% (w/v) fructose solution in drinking water during all 12 weeks; and FFHR + L: FFHR + 20 mg/kg of lumiracoxib by intraesophageal administration. Metabolic variables, blood pressure, morphometric variables, and oxidative stress variables were evaluated; also MMP-2 and MMP-9 (collagenases), VCAM-1, and NF-κB by Westernblot or IFI were evaluated. FFHR presented all variables of metabolic syndrome; there was also an increase in oxidative stress variables; vascular remodeling and left ventricular hypertrophy were evidenced along with a significant increase in the expression of the mentioned proinflammatory molecules and increased activity and expression of collagenase. Lumiracoxib was able to reverse vascular remodeling changes and inflammation, demonstrating the involvement of COX-2 in the pathophysiology of vascular remodeling in this experimental model.



Author(s):  
Abishek B. Santhakumar ◽  
Indu Singh

In the recent years, there has been a great deal of attention in investigating the disease preventive properties of functional foods. Particularly, impact of the antioxidant property of functional foods in reducing the risk or progression of chronic diseases has gained considerable interest amongst researchers and practitioners. Free radicals such as reactive oxygen species are generated in the body by exposure to a number of physiochemical or pathological mechanisms. It is imperative to preserve a balance between the levels of free radicals and antioxidants for routine physiological function, a disparity of which would accelerate oxidative stress. Increased oxidative stress and associated consequences in metabolic disorders such as obesity, cardiovascular diseases and diabetes has warranted the need for exogenous antioxidant concentrates derived from natural foods to alleviate the adverse effects. This chapter provides an overview on the efficacy of functional foods in reducing free radical-mediated damage in metabolic syndrome.



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Speranza Rubattu ◽  
Maurizio Forte ◽  
Salvatore Raffa

Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.



2012 ◽  
Vol 8 (4) ◽  
pp. 382-386 ◽  
Author(s):  
S Shrestha ◽  
L Chandra ◽  
M Aryal ◽  
B K L Das ◽  
S Pandey ◽  
...  

Background Metabolic syndrome is a constellation of physical conditions and metabolic abnormalities, commonly occurring together, that increases an individual’s risk for development of type 2 diabetes mellitus and cardiovascular diseases. Oxidative stress is associated with diabetes, hypertension and other cardiovascular diseases while the role of oxidative stress in pathogenesis of MS is not clearlydefined. Objectives The study aims to find out the prevalence of metabolic syndrome in faculty and staff members at BP Koirala Institute of Health Sciences, Dharan, Nepal and to evaluate oxidative stress levels insubjects with metabolic syndrome. Methods 118 healthy participants working at B. P. Koirala Institute of Health Sciences, Dharan, Nepal were selected at random for this cross-sectional study and blood samples were collected for the estimation of the following biochemical analytes; fasting glucose; triglycerides; total cholesterol; high density lipoprotein cholesterol; Albumin; uric acid; Bilirubin; Malondialdehyde; Catalase; Glutathione peroxidase; Superoxide Dismutase; Glutathione; vitamin C; and lastly vitamin E. Results In this cross-sectional study, 39% subjects were diagnosed with metabolic syndrome , particularly in sedentary subjects. There was no difference in oxidative stress except significant rises in serum uric acid levels and catalase activity in subjects diagnosed with metabolic syndrome . Conclusion The prevalence of metabolic syndrome is higher without oxidative stress in this study, which suggests that oxidative stress does not contribute to the pathogenesis of MS in otherwise healthy subjects.http://dx.doi.org/10.3126/kumj.v8i4.6236 Kathmandu Univ Med J 2010;8(4):382-6   



Sign in / Sign up

Export Citation Format

Share Document