Cytokine mRNA levels in unmanipulated (ex vivo) and in vitro stimulated monkey PBMCs using a semi-quantitative RT-PCR and high sensitivity fluorescence-based detection strategy

Cytokine ◽  
1996 ◽  
Vol 8 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Olivier Benveniste ◽  
Bruno Vaslin ◽  
François Villinger ◽  
Roger Le Grand ◽  
Aftab A. Ansari ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4375-4375
Author(s):  
Aristea Batsali ◽  
Charalampos Pontikoglou ◽  
Emmanuel Agrafiotis ◽  
Elisavet Kouvidi ◽  
Irene Mavroudi ◽  
...  

Abstract We have previously shown (Batsali A et al., Blood 2013:122, 1212) that ex vivo expanded human mesenchymal stem/stromal cells (MSCs) derived from the Wharton's jelly (WJ) of the umbilical cord exhibit increased proliferative capacity and reduced potential to differentiate in vitro to adipocytes and osteocytes, compared to bone marrow (BM) derived-MSCs. Provided that the WNT-pathways are involved in proliferation and differentiation of BM-MSCs, we assumed that the aforementioned findings might be attributed, at least in part, to aberrant WNT-signaling in WJ-MSCs. In support of this hypothesis, we found that gene expression of the Wnt antagonist sFRP4, a promoter of adipogenesis in human adipose tissue-derived MSCs, was significantly down-regulated in WJ-MSCs and that mRNA levels of WNT-induced secreted protein-1, (WISP-1), a regulator of osteogenesis in BM-MSCs, were also significantly reduced in WJ-MSCs. These observations imply a connection between these WNT-associated molecules and the biological properties of WJ-MSCs, which requires, however, further investigation. The present study was undertaken so as to explore the effects of WISP-1 and sFRP4 in growth and differentiation of ex-vivo expanded WJ-MSCs. MSCs were isolated from consenting healthy donors’ BM aspirates (n=5) and from the WJ of full-term neonates (n=5) after written informed consent of the family. MSCs were in vitro expanded, re-seeded for a total of 4 passages (P) and phenotypically characterized by flow cytometry at P3. WJ-MSCs were grown in the absence or presence of rhWISP-1 or rhsFRP4 and cell proliferation was assessed by a methyl-triazolyl-tetrazolium (MTT)-assay. In addition, WJ-MSCs were induced to differentiate in vitro to osteoblasts and adipocytes, in the absence or presence of rhWISP-1 or rhsFRP4 respectively. Differentiation was quantified by cytochemical stains and by the expression of adipocyte- and osteocyte-specific genes by real time RT-PCR. Relative gene expression was calculated by the ΔCt method. The expression of WISP-1 and sFRP4 by non-differentiated WJ- and BM-MSCs as well as by WJ-MSCs during osteogenesis and adipogenesis, respectively, was also evaluated by real time RT-PCR. Culture-expanded cells from both WJ and BM displayed typical morphological and immunophenotypic MSC characteristics and were able to differentiate into osteoblasts and adipocytes. In line with our previous work WISP-1 and sFRP4 mRNA were significantly decreased in WJ-MSCs, compared to BM-MSCs. To explore the role of WISP-1 in WJ-MSCs' growth we cultured cells in the presence of 50 ng/ml or 100 ng/ml rhWISP1 and assessed cell proliferation at multiple time points, throughout a 14-day culture. WISP-1 treatment did not lead to any significant effect in cell numbers. Next, we investigated the time course of WISP1 gene expression during osteoinduction. In all samples, WISP1 mRNA levels increased during osteogenesis. As compared to day0 (exposure to osteogenic medium), the increase in gene expression reached statistical significance at days 7 and 14. Furthermore, WISP-1 gene expression was significantly higher at day 14, compared to day 7. To investigate the functional effects of WISP1 on the osteoblastic differentiation of WJ-MSCs, cells were cultured for 7 days in osteogenic medium supplemented with 50ng/ml rh-WISP1. A significant increase in the expression of RUNX2 and ALP was detected, compared to non-treated cells. To investigate the impact of sFRP4 in WJ-MSC's proliferation we exposed cells to 20nM rhsFRP4 for 14 days. Live cell numbers, at various time points, were significantly reduced in treated cells. Regarding the time course of sFRP4 expression during adipogenic differentiation, sFRP4 mRNA levels increased during adipogenesis reaching statistical significance at days7 and 14, as compared to day0. In addition, sFRP4 gene expression was significantly higher at day 14 as compared to day 7. Finally, when cells underwent adipogenic differentiation in the presence of rhSFRP4, a significant increase in PPARG and CEBPA mRNA levels was detected at day 14, as compared to non-treated cells Collectively, our results suggest that WISP-1 and sFRP4 may be actively implicated in proliferation and differentiation of WJ-MSCs. The functional role of these WNT-related molecules in the biology of WJ-MSCs requires deeper understanding, in view of the growing interest for the use of WJ-MSCs in cell-based therapies. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (13) ◽  
pp. 5776
Author(s):  
Varvara G. Blinova ◽  
Natalia S. Novachly ◽  
Sofya N. Gippius ◽  
Abdullah Hilal ◽  
Yulia A. Gladilina ◽  
...  

Regulatory T cells (Tregs) participate in the negative regulation of inflammatory reactions by suppressing effector cells. In a number of autoimmune disorders, the suppressive function and/or the number of Tregs is compromised. The lack of active functioning Tregs can be restored with adoptive transfer of expanded ex vivo autologous Tregs. In our study, we traced the differentiation and maturation of Tregs CD4+CD25+FoxP3+CD127low over 7 days of cultivation from initial CD4+ T cells under ex vivo conditions. The resulting ex vivo expanded cell population (eTregs) demonstrated the immune profile of Tregs with an increased capacity to suppress the proliferation of target effector cells. The expression of the FoxP3 gene was upregulated within the time of expansion and was associated with gradual demethylation in the promotor region of the T cell-specific demethylation region. Real-time RT-PCR analysis revealed changes in the expression profile of genes involved in cell cycle regulation. In addition to FOXP3, the cells displayed elevated mRNA levels of Ikaros zinc finger transcription factors and the main telomerase catalytic subunit hTERT. Alternative splicing of FoxP3, hTERT and IKZF family members was demonstrated to be involved in eTreg maturation. Our data indicate that expanded ex vivo eTregs develop a Treg-specific phenotype and functional suppressive activity. We suggest that eTregs are not just expanded but transformed cells with enhanced capacities of immune suppression. Our findings may influence further development of cell immunosuppressive therapy based on regulatory T cells.


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Claire Glister ◽  
Leanne Satchell ◽  
Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we comparedex vivoexpression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin orFSHRmRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.


2015 ◽  
Vol 45 (4) ◽  
pp. 704-710 ◽  
Author(s):  
Melânia Lazzari Rigo ◽  
Andressa Minussi Pereira Dau ◽  
Werner Giehl Glanzner ◽  
Manoel Martins ◽  
Renato Zanella ◽  
...  

The main objective of this study was to detect the steroidogenic effects of Ang II in bovine theca cells in vitro. Bovine theca cells were obtained from follicles (larger than 10mm of diameter) collected from a local abattoir and submitted to different treatments in a sequence of experiments. In experiment 1, CYP17A1 mRNA profile was evaluated in LH- (10ng ml-1) and Ang II-treated (0.1µM) theca cells. In experiment 2, a dose-response effect of Ang II (0.001; 0.1 e 10µM) plus insulin (100ng ml-1) and LH (100ng ml-1) was evaluated on steroidogenesis of bovine theca cells. Experiment 3 explored the effects of saralasin (an antagonist of Ang II receptors) on steroid production and steroidogenic enzymes regulation in theca cells. After 24 hours, culture media from experiments 2 and 3 was collected to evaluate testosterone and androstenedione levels by High-Performance Liquid Chromatography. In parallel, mRNA levels of key steroidogenic enzymes (HSD3B2, CYP11A1, CYP17A1) and STAR were assessed by RT-PCR. There was no difference in testosterone and androstenedione production between treated and controls groups, as well as in mRNA levels of the evaluated genes. In conclusion, the results suggest that Ang II does not regulate steroidogenesis in bovine theca cells


1997 ◽  
Vol 82 (6) ◽  
pp. 1926-1931 ◽  
Author(s):  
Nobuharu Fujii ◽  
Takeshi Shibata ◽  
Sachiko Homma ◽  
Haruo Ikegami ◽  
Kazuo Murakami ◽  
...  

Fujii, Nobuharu, Takeshi Shibata, Sachiko Homma, Haruo Ikegami, Kazuo Murakami, and Hitoshi Miyazaki. Exercise-induced changes in β-adrenergic-receptor mRNA level measured by competitive RT-PCR. J. Appl. Physiol. 82(6): 1926–1931, 1997.—Competitive reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to clarify whether dynamic exercise-induced increases in β-adrenergic-receptor (β-AR) number in human lymphocytes are accompanied by increases in the β-AR mRNA level. Sixteen healthy subjects performed cycle ergometry until exhaustion. Before and immediately after exercise, peripheral blood was drawn from a forearm vein for preparation of lymphocytes. Both the β-AR mRNA level and the β-AR number were significantly increased by exercise. The changes in β-AR mRNA level and β-AR number were significantly correlated ( r = 0.63, P < 0.01). This finding suggests that a rapid increase in β-AR mRNA level might be an early adaptive response of the sympathetic nervous system to dynamic exercise. In vitro incubation of lymphocytes with epinephrine had no effect on β-AR mRNA levels, nor did adenosine 3′,5′-cyclic monophosphate, protein kinase C, or intracellular Ca2+ increase the β-AR mRNA level in vitro. Therefore, it appears that other mechanisms underlie the exercise-induced elevation of β-AR mRNA levels in human lymphocytes.


Bone ◽  
1995 ◽  
Vol 17 (6) ◽  
pp. 587
Author(s):  
R.L. van Bezooiien ◽  
S.E. Papapoulos ◽  
C.W.G.M. Löwik
Keyword(s):  
Rt Pcr ◽  

2018 ◽  
Vol 315 (5) ◽  
pp. C653-C663 ◽  
Author(s):  
Kasin Yadunandam Anandam ◽  
Omar A. Alwan ◽  
Veedamali S. Subramanian ◽  
Padmanabhan Srinivasan ◽  
Rubina Kapadia ◽  
...  

Riboflavin (RF), is essential for normal cellular metabolism/function. Intestinal RF absorption occurs via a specific carrier-mediated process that involves the apical transporter RFVT-3 ( SLC52A3) and the basolateral RFVT-1 (SLC52A1). Previously, we characterized different cellular/molecular aspects of the intestinal RF uptake process, but nothing is known about the effect of proinflammatory cytokines on the uptake event. We addressed this issue using in vitro, ex vivo, and in vivo models. First, we determined the level of mRNA expression of the human (h)RFVT-3 and hRFVT-1 in intestinal tissue of patients with inflammatory bowel disease (IBD) and observed a markedly lower level compared with controls. In the in vitro model, exposing Caco-2 cells to tumor necrosis factor-α (TNF-α) led to a significant inhibition in RF uptake, an effect that was abrogated upon knocking down TNF receptor 1 (TNFR1). The inhibition in RF uptake was associated with a significant reduction in the expression of hRFVT-3 and -1 protein and mRNA levels, as well as in the activity of the SLC52A3 and SLC52A1 promoters. The latter effects appear to involve Sp1 and NF-κB sites in these promoters. Similarly, exposure of mouse small intestinal enteroids and wild-type mice to TNF-α led to a significant inhibition in physiological and molecular parameters of intestinal RF uptake. Collectively, these findings demonstrate that exposure of intestinal epithelial cells to TNF-α leads to inhibition in RF uptake and that this effect is mediated, at least in part, via transcriptional mechanism(s). These findings may explain the significantly low RF levels observed in patients with IBD.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shan Zhu ◽  
Yuan Wang ◽  
Hongtao Liu ◽  
Wen Wei ◽  
Yi Tu ◽  
...  

Background. Numerous studies have demonstrated that the inflammatory response is involved in the progression of lipopolysaccharide- (LPS-) induced myocardial cell apoptosis. Accumulating evidence has shown that thyroxine participates in diseases by downregulating the inflammatory response. This study aimed at investigating whether thyroxine alleviates LPS-induced myocardial cell apoptosis. Methods. Bone marrow-derived macrophages (Mø) were treated with LPS and thyroxine, and Mø differentiation and Mø-related cytokine expression were measured. The effect of Mø differentiation on mouse cardiomyocyte (MCM) apoptosis was also detected in vitro. In addition, C57BL/6 mice underwent thyroidectomy and were treated with LPS 35 days later; subsequently, Mø differentiation and myocardial cell apoptosis in hearts were analyzed. To determine whether the nuclear factor-kappa B (NF-κB) p65 pathway mediates the effect of thyroxine on Mø differentiation and myocardial cell apoptosis, the specific NF-κB p65 pathway inhibitor JSH-23 was administered to mice that underwent a thyroidectomy. Results. Levothyroxine treatment significantly reduced the activation of the NF-κB p65 pathway, decreased M1 macrophage (Mø1) differentiation and Mø1-related cytokine mRNA levels in LPS-treated Mø, and increased M2 macrophage (Mø2) differentiation and Mø2-related cytokine mRNA expression. The protective effects of levothyroxine on MCM apoptosis mediated by LPS-treated Mø were alleviated by JSH-23. In mice, thyroidectomy aggravated LPS-induced cardiac injury and cardiac dysfunction, further promoted NF-κB p65 activation, and increased cardiac Mø1 expression and myocardial cell apoptosis but decreased cardiac Mø2 expression. JSH-23 treatment significantly ameliorated the thyroidectomy-induced increases in myocardial cell apoptosis and Mø differentiation. Conclusions. Thyroxine alleviated the Mø1/Mø2 imbalance, reduced the inflammatory response, decreased myocardial cell apoptosis, and protected against cardiac injury and cardiac dysfunction in LPS-treated mice. Thyroxine may be a novel therapeutic strategy to prevent and treat LPS-induced cardiac injury.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Francesco Dituri ◽  
Rosanna Scialpi ◽  
Tannin A. Schmidt ◽  
Martina Frusciante ◽  
Serena Mancarella ◽  
...  

AbstractSorafenib and regorafenib administration is among the preferential approaches to treat hepatocellular carcinoma (HCC), but does not provide satisfactory benefits. Intensive crosstalk occurring between cancer cells and other multiple non-cancerous cell subsets present in the surrounding microenvironment is assumed to affect tumor progression. This interplay is mediated by a number of soluble and structural extracellular matrix (ECM) proteins enriching the stromal milieu. Here we assess the HCC tumor expression of the ECM protein proteoglycan 4 (PRG4) and its potential pharmacologic activity either alone, or in combination with sorafenib and regorafenib. PRG4 mRNA levels resulted strongly correlated with increased survival rate of HCC patients (p = 0.000) in a prospective study involving 78 HCC subjects. We next showed that transforming growth factor beta stimulates PRG4 expression and secretion by primary human HCC cancer-associated fibroblasts, non-invasive HCC cell lines, and ex vivo specimens. By functional tests we found that recombinant human PRG4 (rhPRG4) impairs HCC cell migration. More importantly, the treatment of HCC cells expressing CD44 (the main PRG4 receptor) with rhPRG4 dramatically enhances the growth-limiting capacity of sorafenib and regorafenib, whereas not significantly affecting cell proliferation per se. Conversely, rhPRG4 only poorly potentiates drug effectiveness on low CD44-expressing or stably CD44-silenced HCC cells. Overall, these data suggest that the physiologically-produced compound PRG4 may function as a novel tumor-suppressive agent by strengthening sorafenib and regorafenib effects in the treatment of HCC.


2001 ◽  
Vol 69 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Gabriele Rieder ◽  
Wolfgang Einsiedl ◽  
Rudolf A. Hatz ◽  
Manfred Stolte ◽  
Georg A. Enders ◽  
...  

ABSTRACT Colonization of the gastric mucosa with Helicobacter pylori is associated with a dense infiltration of granulocytes into the lamina propria in the active phase of gastritis. In this study, we investigated the involvement of epithelial cell-derived neutrophil-activating protein 78 (ENA-78) in development of H. pylori-associated gastritis. Antral biopsies from 27 patients with H. pylori-associated gastritis and 25 from H. pylori-negative individuals were first analyzed for ENA-78 and interleukin-8 (IL-8) mRNA by semiquantitative reverse transcription (RT)-PCR. In H. pylori-positive patients, significantly elevated levels were found for both chemokines (P < 0.05). Only IL-8 mRNA levels differed significantly (P< 0.05) in H. pylori-infected individuals who had serum antibodies for cytotoxin-associated protein CagA versus H. pylori-infected CagA-negative persons. Quantification of ENA-78 transcript levels by competitive RT-PCR yielded a significant 45-fold upregulation for ENA-78 transcripts in biopsies of H. pylori-positive versus H. pylori-negative patients (P < 0.05). In contrast to earlier findings with IL-8, the degree of ENA-78 mRNA upregulation was independent of the grade of activity of gastritis. Immunofluorescence studies on tissues of antral biopsies localized ENA-78 protein expression mainly to the gastric epithelium of H. pylori-positive patients, while control tissues were negative. Upregulation of ENA-78 and IL-8 mRNA and protein expression was also observed in an in vitro system using a gastric adenocarcinoma cell line. Only viable H. pyloriyielded a strong ENA-78 and IL-8 induction, while H. pyloriouter membrane proteins or water-soluble proteins had no significant effect. These data provide evidence for the importance of both IL-8 and ENA-78 in the development and perpetuation of H. pylori-associated gastritis.


Sign in / Sign up

Export Citation Format

Share Document