Magnetic Random Access Memories for Computer Data Storage

2008 ◽  
pp. 1620-1634
Author(s):  
Frank Z. Wang
2019 ◽  
Vol 15 (01) ◽  
pp. 1-8
Author(s):  
Ashish C Patel ◽  
C G Joshi

Current data storage technologies cannot keep pace longer with exponentially growing amounts of data through the extensive use of social networking photos and media, etc. The "digital world” with 4.4 zettabytes in 2013 has predicted it to reach 44 zettabytes by 2020. From the past 30 years, scientists and researchers have been trying to develop a robust way of storing data on a medium which is dense and ever-lasting and found DNA as the most promising storage medium. Unlike existing storage devices, DNA requires no maintenance, except the need to store at a cool and dark place. DNA has a small size with high density; just 1 gram of dry DNA can store about 455 exabytes of data. DNA stores the informations using four bases, viz., A, T, G, and C, while CDs, hard disks and other devices stores the information using 0’s and 1’s on the spiral tracks. In the DNA based storage, after binarization of digital file into the binary codes, encoding and decoding are important steps in DNA based storage system. Once the digital file is encoded, the next step is to synthesize arbitrary single-strand DNA sequences and that can be stored in the deep freeze until use.When there is a need for information to be recovered, it can be done using DNA sequencing. New generation sequencing (NGS) capable of producing sequences with very high throughput at a much lower cost about less than 0.1 USD for one MB of data than the first sequencing technologies. Post-sequencing processing includes alignment of all reads using multiple sequence alignment (MSA) algorithms to obtain different consensus sequences. The consensus sequence is decoded as the reversal of the encoding process. Most prior DNA data storage efforts sequenced and decoded the entire amount of stored digital information with no random access, but nowadays it has become possible to extract selective files (e.g., retrieving only required image from a collection) from a DNA pool using PCR-based random access. Various scientists successfully stored up to 110 zettabytes data in one gram of DNA. In the future, with an efficient encoding, error corrections, cheaper DNA synthesis,and sequencing, DNA based storage will become a practical solution for storage of exponentially growing digital data.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2009 ◽  
Vol 15 (S3) ◽  
pp. 53-54
Author(s):  
Aiying Wu ◽  
P. M. Vilarinho

AbstractLead zirconate - lead titanate (PZT) materials are commercially important piezoelectric and ferroelectrics in a wide range of applications, such as data storage (dynamic access and ferroelectric random access memories) and sensing and actuating devices. PZT with the morphotropic phase boundary composition offers the highest piezoelectric response and at the present there are no fullydeveloped alternative materials to PZT. The importance of PZT associated with the continuous requirements of device miniaturization, imposes the development of high quality PZT thin films with optimized properties. Concomitantly due to the dependence of the final properties of thin films on the details of the microstructure a thoroughly analysis at the local scale of their microstructure is necessary. Sol-gel method, is one of the Chemical Solution Deposition techniques used to prepare oxide thin films, such as PZT. Starting from a solution, a solid network is progressively formed via inorganic polymerisation reactions. Most metal alkoxides used for sol-gel synthesis are highly reactive towards hydrolysis and condensation. Therefore their chemical reactivity has to be tailored via the chemical modification (or complexation) of metal alkoxides to avoid uncontrolled reactions and precipitation. For PZT sol gel thin film preparation, two chemical routes are frequently used depending on the nature of the molecular precursor, namely methotoxyethanol (MOE) route and diol-route.


2020 ◽  
Author(s):  
Filip Bošković ◽  
Alexander Ohmann ◽  
Ulrich F. Keyser ◽  
Kaikai Chen

AbstractThree-dimensional (3D) DNA nanostructures built via DNA self-assembly have established recent applications in multiplexed biosensing and storing digital information. However, a key challenge is that 3D DNA structures are not easily copied which is of vital importance for their large-scale production and for access to desired molecules by target-specific amplification. Here, we build 3D DNA structural barcodes and demonstrate the copying and random access of the barcodes from a library of molecules using a modified polymerase chain reaction (PCR). The 3D barcodes were assembled by annealing a single-stranded DNA scaffold with complementary short oligonucleotides containing 3D protrusions at defined locations. DNA nicks in these structures are ligated to facilitate barcode copying using PCR. To randomly access a target from a library of barcodes, we employ a non-complementary end in the DNA construct that serves as a barcode-specific primer template. Readout of the 3D DNA structural barcodes was performed with nanopore measurements. Our study provides a roadmap for convenient production of large quantities of self-assembled 3D DNA nanostructures. In addition, this strategy offers access to specific targets, a crucial capability for multiplexed single-molecule sensing and for DNA data storage.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012022
Author(s):  
Cheng Luo

Abstract Due to the continuous development of information technology, data has increasingly become the core of the daily operation of enterprises and institutions, the main basis for decision-making development. At the same time, due to the development of network, the storage and management of computer data has attracted more and more attention. Aiming at the common problems of computer data storage and management in practical work, this paper analyzes the object and content of data management, investigates the situation of computer data storage and management in China in recent two years, and interviews and tests the data of programming in this design platform. At the same time, in view of the related problems, the research results are applied to practice. On the basis of big data, the storage and management platform is designed. The research and design adopts a special B+ tree node linear structure of CIRC tree, and the linear node structure is changed into a ring structure, which greatly reduces the number of data persistence instructions and the performance overhead. The results show that compared with the most advanced B+ tree design for nonvolatile memory, crab tree has 3.1 times and 2.5 times performance improvement in reading and writing, respectively. Compared with the previous NV tree designed for nonvolatile memory, it has a performance improvement of 1.5 times, and a performance improvement of 8.4 times compared with the latest fast-fair. In the later stage, the expansion of the platform functions is conducive to the analysis and construction of data related storage and management functions, and further improve the ability of data management.


2018 ◽  
Vol 36 (7) ◽  
pp. 660-660 ◽  
Author(s):  
Lee Organick ◽  
Siena Dumas Ang ◽  
Yuan-Jyue Chen ◽  
Randolph Lopez ◽  
Sergey Yekhanin ◽  
...  

2021 ◽  
pp. 2150039
Author(s):  
EJAZ AHMAD KHERA ◽  
HAFEEZ ULLAH ◽  
MUHAMMAD IMRAN ◽  
HASSAN ALGADI ◽  
FAYYAZ HUSSAIN ◽  
...  

Resistive switching (RS) performances had prodigious attention due to their auspicious potential for data storage. Oxide-based devices with metal insulator metal (MIM) structure are more valuable for RS applications. In this study, we have studied the effect of divalent (nickel) as well as trivalent (aluminum) dopant without and with oxygen vacancy (V[Formula: see text] in hafnia (HfO[Formula: see text]-based resistive random-access memory (RRAM) devices. All calculations are carried out within the full potential linearized augmented plane-wave (FP-LAPW) method based on the WIEN2k code by using generalized gradient approximation (GGA) and generalized gradient approximation with U Hubbard parameters (GGA+U) approach. The studies of the band structure, density of states and charge density reveal that HfNiO2+Vo are more appropriate dopant to enhance the conductivity for RRAM devices.


COSMOS ◽  
2011 ◽  
Vol 07 (01) ◽  
pp. 25-30
Author(s):  
T. TAHMASEBI ◽  
S. N. PIRAMANAYAGAM

Data storage is one area of technology where nanotechnology has been used even before the term nanotechnology became very popular. The magnetic recording media — the disk that stores information in hard disk drives — used nanotechnology in the late 1990s, in the form of grains which are 15 nm or less in diameter (the grains in current technology are about 8 nm in diameter). The reading sensors of hard disk also make use of thin nanostructures in several dimensions to read information from the recording media. This paper introduces the technology behind the magnetic random access memory and related topics, which form the core of the symposium L of ICMAT 2011, which is titled "Memory, Nanomagnetics, Materials and Devices".


1988 ◽  
Vol 110 (4) ◽  
pp. 507-514 ◽  
Author(s):  
S. K. Sinha

Thin spinning annular disks, which have widely varying applications ranging from inertial wheels in spacecraft to computer data storage devices, experience some inherent vibration problems during operation. One of the techniques to control the vibrations of the disk, being analyzed in this paper, is to stiffen it by attaching a reinforcing ring at its outer edge. The present work considers the effect of adding such a ring and discusses the changes in the natural frequencies for a large range of design parameters. The classical plate bending equation based upon small deflection theory which includes the contribution of rotational membrane stresses has been used in the eigenvalue formulation. Numerical results presented in a nondimensional form should be useful in predicting the dynamic response of such a disk stiffened with a circular ring under the spinning conditions.


Sign in / Sign up

Export Citation Format

Share Document