cAMP Biosensor Assay Using BacMam Expression System: Studying the Downstream Signaling of LH/hCG Receptor Activation

Author(s):  
Darja Lavogina ◽  
Tõnis Laasfeld ◽  
Maris-Johanna Tahk ◽  
Olga Kukk ◽  
Anni Allikalt ◽  
...  
2021 ◽  
Author(s):  
Lucie Oberhauser ◽  
Miriam Stoeber

AbstractThe kappa opioid receptor (KOR) has emerged as a promising therapeutic target for pain and itch treatment. There is growing interest in biased agonists that preferentially activate select signaling pathways downstream of KOR activation on the cellular level due to their therapeutic promise in retaining the analgesic and antipruritic effects and eliminating the sedative and dysphoric effects of KOR signaling on the physiological level. The concept of ligand-selective signaling includes that biased ligands promote KOR to selectively recruit one transducer or regulator protein over another, introducing bias into the signaling cascade at the very receptor-proximal level. Measuring agonist effects directly at the receptor has remained challenging and previous studies have focused on inferring agonist-selective KOR engagement with G protein relative to β-arrestin based on downstream signaling readouts. Here we discuss novel strategies to directly assess ligand-selective effects on receptor activation using KOR-interacting biosensors. The conformation-specific cytoplasmic biosensors are disconnected from the endogenous signaling machinery and provide a direct receptor-proxy readout of ligand effects in living cells. Receptor–biosensor interaction is ligand concentration dependent and can be used to determine relative ligand potency and efficacy. In addition, the biosensors reveal the existence of two dimensions of agonist bias in the cellular context: Firstly, agonists can selectively produce discrete protein-engaged KOR states and secondly, agonists can differ in the precise subcellular location at which they activate KOR. We discuss the value and the limitations of using orthogonal receptor-interacting biosensors in the quest to understand functional selectivity amongst KOR agonists in the cellular context.


2018 ◽  
Vol 19 (11) ◽  
pp. 3590 ◽  
Author(s):  
Greg Clark ◽  
Stanley Roux

Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.


2000 ◽  
Vol 20 (17) ◽  
pp. 6364-6373 ◽  
Author(s):  
Sheri L. Moores ◽  
Laura M. Selfors ◽  
Jessica Fredericks ◽  
Timo Breit ◽  
Keiko Fujikawa ◽  
...  

ABSTRACT Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response to activation of multiple cell surface receptors. However, it is not known whether the recently identified isoforms Vav2 and Vav3, which are broadly expressed, can couple with similar classes of receptors, nor is it known whether all Vav isoforms possess identical functional activities. We expressed Vav1, Vav2, and Vav3 at equivalent levels to directly compare the responses of the Vav proteins to receptor activation. Although each Vav isoform was tyrosine phosphorylated upon activation of representative receptor tyrosine kinases, integrin, and lymphocyte antigen receptors, we found unique aspects of Vav protein coupling in each receptor pathway. Each Vav protein coprecipitated with activated epidermal growth factor and platelet-derived growth factor (PDGF) receptors, and multiple phosphorylated tyrosine residues on the PDGF receptor were able to mediate Vav2 tyrosine phosphorylation. Integrin-induced tyrosine phosphorylation of Vav proteins was not detected in nonhematopoietic cells unless the protein tyrosine kinase Syk was also expressed, suggesting that integrin activation of Vav proteins may be restricted to cell types that express particular tyrosine kinases. In addition, we found that Vav1, but not Vav2 or Vav3, can efficiently cooperate with T-cell receptor signaling to enhance NFAT-dependent transcription, while Vav1 and Vav3, but not Vav2, can enhance NFκB-dependent transcription. Thus, although each Vav isoform can respond to similar cell surface receptors, there are isoform-specific differences in their activation of downstream signaling pathways.


2017 ◽  
Vol 102 (11) ◽  
pp. 4031-4040 ◽  
Author(s):  
Nilani Ramshanker ◽  
Maiken Aagaard ◽  
Rikke Hjortebjerg ◽  
Thomas Schmidt Voss ◽  
Niels Møller ◽  
...  

Abstract Context Short-term glucocorticoid exposure increases serum insulinlike growth factor I (IGF-I) concentrations but antagonizes IGF-I tissue signaling. The underlying mechanisms remain unknown. Objective To identify at which levels glucocorticoid inhibits IGF-I signaling. Design and Methods Nineteen healthy males received prednisolone (37.5 mg/d) and placebo for 5 days in a randomized, double-blinded, placebo-controlled crossover study. Serum was collected on days 1, 3, and 5, and abdominal skin suction blister fluid (SBF; ~interstitial fluid) was taken on day 5 (n = 9) together with muscle biopsy specimens (n = 19). The ability of serum and SBF to activate the IGF-I receptor (IGF-IR) (bioactive IGF) and its downstream signaling proteins was assessed using IGF-IR–transfected cells. Results Prednisolone increased IGF-I concentrations and bioactive IGF in serum (P ≤ 0.001) but not in SBF, which, compared with serum, contained less bioactive IGF (~28%) after prednisolone (P < 0.05). This observation was unexplained by SBF concentrations of IGFs and IGF-binding proteins (IGFBPs) 1 to 4. However, following prednisolone treatment, SBF contained less IGFBP-4 fragments (P < 0.05) generated by pregnancy-associated plasma protein A (PAPP-A). Concomitantly, prednisolone increased SBF levels of stanniocalcin 2 (STC2) (P = 0.02) compared with serum. STC2 blocks PAPP-A from cleaving IGFBP-4. Finally, prednisolone suppressed post–IGF-IR signaling pathways at the level of insulin receptor substrate 1 (P < 0.05) but did not change skeletal muscle IGF-IR, IGF-I, or STC2 messenger RNA. Conclusion Prednisolone increased IGF-I concentrations and IGF bioactivity in serum but not in tissue fluid. The latter may relate to a STC2-mediated inhibition of PAPP-A in tissue fluids. Furthermore, prednisolone induced post–IGF-IR resistance. Thus, glucocorticoid may exert distinct, compartment-specific effects on IGF action.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Blanca V. Rodriguez ◽  
Meta J. Kuehn

Abstract Bacterial-derived RNA and DNA can function as ligands for intracellular receptor activation and induce downstream signaling to modulate the host response to bacterial infection. The mechanisms underlying the secretion of immunomodulatory RNA and DNA by pathogens such as Staphylococcus aureus and their delivery to intracellular host cell receptors are not well understood. Recently, extracellular membrane vesicle (MV) production has been proposed as a general secretion mechanism that could facilitate the delivery of functional bacterial nucleic acids into host cells. S. aureus produce membrane-bound, spherical, nano-sized, MVs packaged with a select array of bioactive macromolecules and they have been shown to play important roles in bacterial virulence and in immune modulation through the transmission of biologic signals to host cells. Here we show that S. aureus secretes RNA and DNA molecules that are mostly protected from degradation by their association with MVs. Importantly, we demonstrate that MVs can be delivered into cultured macrophage cells and subsequently stimulate a potent IFN-β response in recipient cells via activation of endosomal Toll-like receptors. These findings advance our understanding of the mechanisms by which bacterial nucleic acids traffic extracellularly to trigger the modulation of host immune responses.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Taketoshi Noguchi ◽  
Toshiyuki Sado ◽  
Katsuhiko Naruse ◽  
Hiroshi Shigetomi ◽  
Akira Onogi ◽  
...  

Objective. Individuals with inflammation have a myriad of pregnancy aberrations including increasing their preterm birth risk. Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE) and their ligands were all found to play a key role in inflammation. In the present study, we reviewed TLR and RAGE expression, their ligands, and signaling in preterm birth.Research Design and Methods. A systematic search was performed in the electronic databases PubMed and ScienceDirect up to July 2010, combining the keywords “preterm birth,” “TLR”, “RAGE”, “danger signal”, “alarmin”, “genomewide,” “microarray,” and “proteomics” with specific expression profiles of genes and proteins.Results. This paper provides data on TLR and RAGE levels and critical downstream signaling events including NF-kappaB-dependent proinflammatory cytokine expression in preterm birth. About half of the genes and proteins specifically present in preterm birth have the properties of endogenous ligands “alarmin” for receptor activation. The interactions between the TLR-mediated acute inflammation and RAGE-mediated chronic inflammation have clear implications for preterm birth via the TLR and RAGE system, which may be acting collectively.Conclusions. TLR and RAGE expression and their ligands, signaling, and functional activation are increased in preterm birth and may contribute to the proinflammatory state.


2019 ◽  
Author(s):  
Aniruddha R. Agnihotri ◽  
Sanyami S. Zunjarrao ◽  
Mukta Nagare ◽  
Rakesh S. Joshi

ABSTRACTGustatory receptor (GR) is one of the essential chemosensory molecules in Lepidopteran pests. GR is involved in sensing several canonical tastes which in turn regulate the diverse behavioral and physiological responses of these insects. In this article, we have evaluated the alteration in feeding response of Helicoverpa armigera by blocking and silencing of sugar-sensing gustatory receptor 9 (HarmGr9). Sf9 cells based assay showed that glucose analogue, Miglitol, can bind to the expressed HarmGr9. This binding might lead to an inhibition of receptor activation and downstream signaling, indicated by reduced intracellular Ca2+ fluorescence. Further, the in-vivo study illustrated the feeding rate reduced on a diet containing miglitol as compared to the larvae fed on the artificial diet. Reduction in feeding rate was prolonged in insects fed on the miglitol containing diet even after switching to the control glucose diet. Competitive cell-based assay and feeding assay, using equimolar glucose and miglitol, also showed an inhibitory effect on HarmGr-9 activation and insect feeding rate. We have observed similar feeding rate reduction in HarmGr9 knockdown in H. armigera larvae. We believe this unique approach of H. armigera feeding response inhibition by blocking the sugar receptor can be further used to develop a novel strategy for agricultural pest management.


2021 ◽  
Author(s):  
Ding Liang ◽  
Torsten Lowin ◽  
Xinkun Cheng ◽  
Tim Classen ◽  
Georg Pongratz

Abstract Background: Rheumatoid arthritis (RA) is influenced by the activity of the sympathetic nervous system (SNS). In animal models of RA, the SNS promotes severity of the disease and its manipulation modulates experimental arthritis depending on timing of the intervention. Synovial fibroblasts (SF) are major contributors to RA pathology but their modulation by the SNS has been rarely investigated. In this study we assessed the expression and function of adrenergic receptors in RA and osteoarthritis (OA) synovial fibroblasts and investigated their downstream signaling. Methods: We used western blot and quantitative PCR (qPCR) to determine protein and mRNA of adrenergic receptors in OASF/RASF. Furthermore we determined α1a and β2 protein in synovial tissue by immunofluorescence. ELISA was employed to determine IL-6 production. p38 kinase activation and translocation was analyzed by cell-based ELISA and immunofluorescence.Results: We detected α1a, α2b, β1, β2 and β3 protein in OASF/RASF and α1a and β2 protein in synovial tissue of OA and RA patients. The pro-inflammatory cytokines IFN-γ and TNF downregulated β3 adrenergic receptor. Activation of α1a, α2b, β2 and β3 increased production of TNF-induced IL-6 which was inhibited by specific antagonists. Furthermore, β3 agonism enhanced p38 phosphorylation and translocation to the nucleus.Conclusion: Among a comprehensive characterization of the adrenergic system of OASF/ RASF, we report for the first time β3 expression and demonstrated that this adrenergic receptor participates in the inflammatory response of synovial fibroblasts. Therefore, modulation of β3 might pose a new therapeutic opportunity to modulate synovial fibroblast function in patients with RA.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Peng Wang ◽  
Yonghui Yuan ◽  
Wenda Lin ◽  
Hongshan Zhong ◽  
Ke Xu ◽  
...  

AbstractThe potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.


2007 ◽  
Vol 194 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed S Razzaque ◽  
Beate Lanske

Normal mineral ion homeostasis is tightly controlled by numerous endocrine factors that coordinately exert effects on intestine, kidney, and bone to maintain physiological balance. The importance of the fibroblast growth factor (FGF)-23–klotho axis in regulating mineral ion homeostasis has been proposed from recent research observations. Experimental studies suggest that 1) FGF23 is an important in vivo regulator of phosphate homeostasis, 2) FGF23 acts as a counter regulatory hormone to modulate the renal 1α-hydroxylase and sodium–phosphate cotransporter activities, 3) there is a trend of interrelationship between FGF23 and parathyroid hormone activities, 4) most of the FGF23 functions are conducted through the activation of FGF receptors, and 5) such receptor activation needs klotho, as a cofactor to generate downstream signaling events. These observations clearly suggest the emerging roles of the FGF23–klotho axis in maintaining mineral ion homeostasis. In this brief article, we will summarize how the FGF23–klotho axis might coordinately regulate normal mineral ion homeostasis, and how their abnormal regulation could severely disrupt such homeostasis to induce disease pathology.


Sign in / Sign up

Export Citation Format

Share Document