Quantification of Soluble Sugars and Sugar Alcohols by LC-MS/MS

Author(s):  
Regina Feil ◽  
John Edward Lunn
2021 ◽  
Author(s):  
A S Schoonmaker ◽  
R Hillabrand ◽  
V J Lieffers ◽  
P S Chow ◽  
S M Landhäusser

Abstract In an attempt to comprehensively study the dynamics of non-structural carbon compounds (NCC), we measured the seasonal changes of soluble sugars, starch, lipids, and sugar alcohols in the leaves, branches, stem, and roots of the fast-growing Pinus contorta (pine) and slow-growing Picea glauca (spruce) trees growing in a boreal climate. In addition to measuring seasonal concentrations of these compounds, the relative contribution of these compounds to the total NCC pool within organs of trees (~8 m tall) was estimated and compared across different phenological and growth stages. Both species showed large seasonal shifts from starch to sugars from spring to fall in nearly all organs and tissues; most likely an adaptation to the cold winters. For both species the total fluctuation of sugar + starch across the year (i.e., the difference between the minimum and maximum observed across collection times) was estimated to be between 1.6 kg and 1.8 kg for all NCCs. The fluctuation, however, was 1.40 times greater than the minimum reserves in pine while only 0.72 times the minimum reserves in spruce. By tissue type, NCC fluctuations were greatest in the roots of both species. Roots showed a large build-up of reserves in late spring, but these reserves were depleted over summer and fall. Storage reserves in needles and branches declined over the summer and this decline may be linked to the sink strength of the stem during diameter growth. Some notable highlights of this holistic study: a late winter build-up of sugars in the stem xylem of both species but especially spruce; an increase in sugar alcohols in the bark of spruce in very late winter which could indicate mobilization to support early growth in spring; high lipid reserves in the bark of pine, that appeared not to be impacted by seasonal changes between summer and winter. Collectively, these observations point towards a more conservative NCC reserve strategy in spruce compared to pine which is consistent with its stress tolerance and greater longevity.


1992 ◽  
Vol 85 (4) ◽  
pp. 581-588 ◽  
Author(s):  
Olivier Leprince ◽  
Adrie van der Werf ◽  
Roger Deltour ◽  
Hans Lambers

2018 ◽  
Vol 6 (2) ◽  
pp. 140-146
Author(s):  
Fredd Vergara ◽  
Amiu Shino ◽  
Bart Rymen ◽  
Jun Kikuchi

2016 ◽  
Vol 5 (07) ◽  
pp. 4694 ◽  
Author(s):  
Viliana Vasileva ◽  
Anna Ilieva

In pot trial the biochemical composition and phosphorus use efficiency of birdsfoot trefoil, sainfoin and subterranean clover grown pure and in mixtures with perennial ryegrass in the next ratios were studied in the Institute of Forage Crops, Pleven, Bulgaria: birdsfoot trefoil + perennial ryegrass (50:50%); sainfoin + perennial ryegrass (50:50%); subterranean clover + perennial ryegrass (50:50%); birdsfoot trefoil + subterranean clover + perennial ryegrass (33:33:33%); sainfoin + subterranean clover + perennial ryegrass (33:33:33%). The highest crude protein content was found in the aboveground mass of birdsfoot trefoil (19.17%) and sainfoin (19.30%). The water soluble sugars contents in mixtures was found higher compared to the pure grown legumes. Birdsfoot trefoil showed the highest phosphorus use efficiency for plant biomass accumulation and nodules formation. In mixtures the phosphorus use efficiency was found be higher as compared to the same in pure grown legumes.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1411
Author(s):  
Rashida Perveen ◽  
Xiukang Wang ◽  
Yasir Jamil ◽  
Qasim Ali ◽  
Shafaqat Ali ◽  
...  

The present investigation was undertaken to assess the effects of different doses (100, 300, and 500 mJ) of low power He–Ne laser (632.8 nm) irradiation on seed germination and thermodynamics attributes and activities of potential germinating enzymes in relation with changes in seed metabolites. He–Ne laser seed irradiation increased the amylase (Amy), protease (Pro) and glucosidase (Gluco) activities, with a significant improvement in seed thermodynamics and seed germination attributes. A fast increase was found in free fatty acids (FFA), free amino acids (FAA), chlorophyll (Chl), carotenoids (Car), total soluble sugars (TSS) and reducing sugars (RS) in laser treated seeds in parallel with fast decline in seed oil contents and total soluble proteins (TSP). Significant positive correlations were recorded in laser-induced enhanced seed energy levels, germination, activities of germination enzymes with levels of FAA, FFA, Chl, TSS and RS, but a negative correlation with the levels of TSP and oil. In conclusion, the seed treatment with 100 and 300 mJ He–Ne laser was more effective to improve the seed germination potential associated with an improvement in seed energy levels due to increased activities of germination enzymes due to the speedy breakdown of seed reserves to simple metabolites as building blocks.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 713
Author(s):  
Muna Ali Abdalla ◽  
Fengjie Li ◽  
Arlette Wenzel-Storjohann ◽  
Saad Sulieman ◽  
Deniz Tasdemir ◽  
...  

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (−S). Significant differences were observed under −S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 16
Author(s):  
Heba Hassan ◽  
Aishah Alatawi ◽  
Awatif Abdulmajeed ◽  
Manal Emam ◽  
Hemmat Khattab

Photosystem II is extremely susceptible to environmental alterations, particularly high temperatures. The maintenance of an efficient photosynthetic system under stress conditions is one of the main issues for plants to attain their required energy. Nowadays, searching for stress alleviators is the main goal for maintaining photosynthetic system productivity and, thereby, crop yield under global climate change. Potassium silicate (K2SiO3, 1.5 mM) and silicon dioxide nanoparticles (SiO2NPs, 1.66 mM) were used to mitigate the negative impacts of heat stress (45 °C, 5 h) on wheat (Triticum aestivum L.) cv. (Shandawelly) seedlings. The results showed that K2SiO3 and SiO2NPs diminished leaf rolling symptoms and electrolyte leakage (EL) of heat-stressed wheat leaves. Furthermore, the maximum quantum yield of photosystem II (Fv/Fm) and the performance index (PIabs), as well as the photosynthetic pigments and organic solutes including soluble sugars, sucrose, and proline accumulation, were increased in K2SiO3 and SiO2NPs stressed leaves. At the molecular level, RT-PCR analysis showed that K2SiO3 and SiO2NPs treatments stimulated the overexpression of PsbH, PsbB, and PsbD genes. Notably, this investigation indicated that K2SiO3 was more effective in improving wheat thermotolerance compared to SiO2NPs. The application of K2SiO3 and SiO2NPs may be one of the proposed approaches to improve crop growth and productivity to tolerate climatic change.


Weed Science ◽  
2021 ◽  
pp. 1-23
Author(s):  
Katherine M. Ghantous ◽  
Hilary A. Sandler

Abstract Applying control measures when carbohydrate levels are low can decrease the likelihood of plant survival, but little is known about the carbohydrate cycles of dewberry (Rubus spp.), a problematic weed group on cranberry farms. Weedy Rubus plants were collected from areas adjacent to production beds on commercial cranberry farms in Massachusetts, two locations per year for two years. For each site and year, four entire plants were collected at five phenological stages: budbreak, full leaf expansion, flowering, fruit maturity, and after onset of dormancy. Root sections were analyzed for total nonstructural carbohydrate (TNC; starch, sucrose, fructose, and glucose). Overall trends for all sites and years showed TNC were lowest at full leaf expansion or flowering; when sampled at dormancy, TNC concentrations were greater than or equal to those measured at budbreak. Starch, a carbohydrate form associated with long-term storage, had low levels at budbreak, leaf expansion and/or flowering with a significant increase at fruit maturity and the onset of dormancy, ending at levels higher than those found at budbreak. The concentration of soluble sugars, carbohydrate forms readily usable by plants, was highest at budbreak compared to the other four phenological samplings. Overall, our findings supported the hypothesis that TNC levels within the roots of weedy Rubus plants can be predicted based on different phenological growth stages in Massachusetts. However, recommendations for timing management practices cannot be based on TNC cycles alone; other factors such as temporal proximity to dormancy may also impact Rubus plants recovery and further research is warranted. Late-season damage should allow less time for plants to replenish carbohydrate reserves (prior to the onset of dormancy), thereby likely enhancing weed management tactics effectiveness over time. Future studies should consider tracking the relationship between environmental conditions, phenological stages, and carbohydrate trends.


Sign in / Sign up

Export Citation Format

Share Document