Meat in the Human Diet: A Biosocial Perspective

Author(s):  
Frédéric Leroy ◽  
Stefaan De Smet
Keyword(s):  
2019 ◽  
Author(s):  
B Bhattarai ◽  
SK Steffensen ◽  
PL Gregersen ◽  
JH Jensen ◽  
KD Sørensen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelsey E. Witt ◽  
Karthik Yarlagadda ◽  
Julie M. Allen ◽  
Alyssa C. Bader ◽  
Mary L. Simon ◽  
...  

AbstractPaleofeces or coprolites are often used to reconstruct diet at archaeological sites, usually using macroscopic analyses or targeted DNA amplification and sequencing. Here we present an integrative analysis of dog coprolites, combining macroscopic analyses, stable isotope measurements, and DNA shotgun sequencing to examine diet and health status. Dog coprolites used in this study were recovered from the Janey B. Goode and East Saint Louis archaeological sites, both of which are located in the American Bottom, an extensive Mississippi River floodplain in Southwestern Illinois. Based on the context of recovery, coprolites are assigned to the Late Woodland and Terminal Late Woodland periods (ca. 600–1050 AD). Given the scarcity of human remains from this time period, these dog coprolites can be useful as a proxy for understanding human diet during the Late Woodland period. We find that the Late Woodland dogs consumed a variety of fish as well as bird and plant taxa, possibly including maize, and also harbored intestinal parasites and pathogenic bacteria. By sequencing the fecal microbiome of the coprolites, we find some similarities to modern dog microbiomes, as well as specific taxa that can be used to discriminate between modern and ancient microbiomes, excluding soil contaminants. As dogs are often used as a surrogate to assess human diet, humans living with these dogs likely had a similar diet and were affected by similar parasites. These analyses, when integrated, show a more comprehensive view of ancient dog and human diet and health in the region during the initial expansion of maize agriculture than any individual method could alone.


2021 ◽  
Vol 11 (5) ◽  
pp. 2409
Author(s):  
Wojciech Kolanowski

Salmonids are valuable fish in the human diet due to their high content of bioactive omega-3 very long-chain polyunsaturated fatty acid (VLC PUFA). The aim of this study was to assess the omega-3 VLC PUFA content in selected salmonid fish present on the food market regarding whether they were farm-raised or wild. It was assumed that farm-raised fish, by eating well-balanced feed enriched with omega-3 PUFA, might contain omega-3 VLC PUFA in levels similar to that of wild fish. Fat content, fatty acid composition and omega-3 VLC PUFA content in fish fillets were measured. Farm-raised salmon from Norway, wild Baltic salmon, farm-raised rainbow trout and brown trout were bought from a food market whereas wild trout (rainbow and brown) were caught alive. The fat content in fish ranged from 3.3 to 8.0 g/100 g of fillet. It was confirmed that although wild salmonid fish contain 10–25% more omega-3 VLC PUFA in lipid fraction, the farm-raised ones, due to the 60–100% higher fat content, are an equally rich source of these desirable fatty acids in the human diet. One serving (130 g) of salmonid fish fillets might provide a significant dose of omega-3 VLC PUFA, from 1.2 to 2.5 g. Thus, due to very high content of bioactive fatty acids eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic (DHA) in their meat, salmonid fish currently present on the food market, both sea and freshwater as well as wild and farm-raised, should be considered as natural functional food.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 894
Author(s):  
Cecilia Martínez ◽  
Juan Luis Valenzuela ◽  
Manuel Jamilena

Cucurbitaceae is one of the most economically important plant families, and includes some worldwide cultivated species like cucumber, melons, and squashes, and some regionally cultivated and feral species that contribute to the human diet. For centuries, cucurbits have been appreciated because of their nutritional value and, in traditional medicine, because of their ability to alleviate certain ailments. Several studies have demonstrated the remarkable contents of valuable compounds in cucurbits, including antioxidants such as polyphenols, flavonoids, and carotenoids, but also tannins and terpenoids, which are abundant. This antioxidant power is beneficial for human health, but also in facing plant diseases and abiotic stresses. This review brings together data on the antioxidant properties of cucurbit species, addressing the genetic and pre- and postharvest factors that regulate the antioxidant content in different plant organs. Environmental conditions, management, storage, and pre- and postharvest treatments influencing the biosynthesis and activity of antioxidants, together with the biodiversity of this family, are determinant in improving the antioxidant potential of this group of species. Plant breeding, as well as the development of innovative biotechnological approaches, is also leading to new possibilities for exploiting cucurbits as functional products.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 393
Author(s):  
Eva Johansson ◽  
Maria Luisa Prieto-Linde ◽  
Hans Larsson

Consumer interest in local and organic produce, sustainability along the production chain and food products contributing to health, are laying the foundation for local and organic-based diets using nutrient-dense food. Here, we evaluated 25 locally adapted landrace and ancient spring cereal genotypes per location over four locations and three years, for mineral content, nutritional yield and nutrient density. The results showed a large variation in minerals content and composition in the genotypes, but also over cultivation locations, cultivation years and for genotype groups. Highest minerals content was found in oats, while highest content of Zn and Fe was found in ancient wheats. The wheat Diamant brun, the wheat landrace Öland and naked barley showed high mineral values and high content of Zn and Fe when grown in Alnarp. Nutritional yield, of the cereals evaluated here, was high related to values reported internationally but lower than those found in a comparable winter wheat material. The nutrient density was generally high; less than 350 g was needed if any of the evaluated genotype groups were to be used in the daily diet to reach the recommended value of Zn and Fe, while if the suggested Novel Nordic Diet mix was used, only 250 g were needed. A transfer from currently consumed cereals to those in the present study, along the New Nordic Diet path, showed their potential to contribute as sustainable and nutrient-rich sources in the human diet.


2020 ◽  
Vol 246 (12) ◽  
pp. 2505-2515
Author(s):  
Mariola Drozdowska ◽  
Teresa Leszczyńska ◽  
Aneta Koronowicz ◽  
Ewelina Piasna-Słupecka ◽  
Dominik Domagała ◽  
...  

AbstractCruciferous vegetables are a valuable source of ingredients with health benefits. The most characteristic compounds of cruciferous vegetables with identified anticancer properties are glucosinolates. Young shoots and sprouts of red cabbage are becoming a popular fresh food rich in nutrients and bioactive compounds. The objective of this research was to determine, for the first time in a comprehensive approach, whether young shoots of red headed cabbage are a better source of selected nutrients and glucosinolates in the human diet in comparison to the vegetable at full maturity. The proximate composition (protein, fat, digestible carbohydrates, fiber), fatty acids profile, minerals (calcium, magnesium, potassium, sodium, iron, zinc, manganese, copper), as well as glucosinolates were examined. The red headed cabbage was characterized by a significantly larger amount of dry matter, and total and digestible carbohydrates in comparison to young shoots. The ready-to-eat young shoots, which are in the phase of intensive growth, are a better source of protein, selected minerals, and especially glucosinolates. The level of some nutrients can be enhanced and the intake of pro-healthy glucosinolates can be significantly increased by including young shoots of red cabbage into the diet.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 524 ◽  
Author(s):  
Lu ◽  
Eiriksson ◽  
Thorsteinsdóttir ◽  
Simonsen

Bryophytes (mosses, liverworts and hornworts) often produce high amounts of very long-chain polyunsaturated fatty acids (vl-PUFAs) including arachidonic acid (AA, 20:4 △5,8,11,14) and eicosapentaenoic acid (EPA, 20:5 △5,8,11,14,17). The presence of vl-PUFAs is common for marine organisms such as algae, but rarely found in higher plants. This could indicate that bryophytes did not lose their marine origin completely when they landed into the non-aqueous environment. Vl-PUFA, especially the omega-3 fatty acid EPA, is essential in human diet for its benefits on healthy brain development and inflammation modulation. Recent studies are committed to finding new sources of vl-PUFAs instead of fish and algae oil. In this review, we summarize the fatty acid compositions and contents in the previous studies, as well as the approaches for qualification and quantification. We also conclude different approaches to enhance AA and EPA productions including biotic and abiotic stresses.


2002 ◽  
Vol 87 (4) ◽  
pp. 299-306 ◽  
Author(s):  
Jennifer L. Donovan ◽  
Adam Lee ◽  
Claudine Manach ◽  
Laurent Rios ◽  
Christine Morand ◽  
...  

Flavanols are the most abundant flavonoids in the human diet where they exist as monomers, oligomers and polymers. In the present study, catechin, the procyanidin dimer B3 and a grapeseed extract containing catechin, epicatechin and a mixture of procyanidins were fed to rats in a single meal. After the meals, catechin and epicatechin were present in conjugated forms in both plasma and urine. In contrast, no procyanidins or conjugates were detected in the plasma or urine of any rats. Procyanidins were not cleaved into bioavailable monomers and had no significant effects on the plasma levels or urinary excretion of the monomers when supplied together in the grapeseed extract. We conclude that the nutritional effects of dietary procyanidins are unlikely to be due to procyanidins themselves or monomeric metabolites with the intact flavonoid-ring structure, as they do not exist at detectable concentrations in vivo. Future research should focus on other procyanidin metabolites such as phenolic acids and on the effects of the unabsorbed oligomers and polymers on the human gastrointestinal tract.


Sign in / Sign up

Export Citation Format

Share Document