An Investigation of the Impact of Haptics for Promoting Understanding of Difficult Concepts in Cell Biology

Author(s):  
Mary Webb ◽  
Megan Tracey ◽  
William Harwin ◽  
Ozan Tokatli ◽  
Faustina Hwang ◽  
...  
Keyword(s):  
2018 ◽  
Vol 18 (6) ◽  
pp. 832-836
Author(s):  
Giuseppe Buono ◽  
Francesco Schettini ◽  
Francesco Perri ◽  
Grazia Arpino ◽  
Roberto Bianco ◽  
...  

Traditionally, breast cancer (BC) is divided into different subtypes defined by immunohistochemistry (IHC) according to the expression of hormone receptors and overexpression/amplification of human epidermal growth factor receptor 2 (HER2), with crucial therapeutic implications. In the last few years, the definition of different BC molecular subgroups within the IHC-defined subtypes and the identification of the important role that molecular heterogeneity can play in tumor progression and treatment resistance have inspired the search for personalized therapeutic approaches. In this scenario, translational research represents a key strategy to apply knowledge from cancer biology to the clinical setting, through the study of all the tumors “omics”, including genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Importantly, the introduction of new high-throughput technologies, such as next generation sequencing (NGS) for the study of cancer genome and transcriptome, greatly amplifies the potential and the applications of translational research in the oncology field. Moreover, the introduction of new experimental approaches, such as liquid biopsy, as well as new-concept clinical trials, such as biomarker-driven adaptive studies, may represent a turning point for BC translational research. </P><P> It is likely that translational research will have in the near future a significant impact on BC care, especially by giving us the possibility to dissect the complexity of tumor cell biology and develop new personalized treatment strategies.


Author(s):  
D. Marchant ◽  
X. Si ◽  
H. Luo ◽  
B. McManus ◽  
D. Yang

2021 ◽  
Vol 12 ◽  
Author(s):  
Arzoo M. Patel ◽  
Yuxin S. Liu ◽  
Scott P. Davies ◽  
Rachel M. Brown ◽  
Deirdre A. Kelly ◽  
...  

B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Frank D. Müller ◽  
Dirk Schüler ◽  
Daniel Pfeiffer

ABSTRACT Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth’s magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 573 ◽  
Author(s):  
Donal O’Shea ◽  
Andrew E. Hogan

Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Najmuddin Mohd Saquib ◽  
Shilpa Jamwal ◽  
Mukul Kumar Midha ◽  
Hirdya Narain Verma ◽  
Venkatasamy Manivel

Even though endoplasmic reticulum (ER) stress associated with mycobacterial infection has been well studied, the molecular basis of ER as a crucial organelle to determine the fate of Mtb is yet to be established. Here, we have studied the ability of Mtb to manipulate the ultrastructural architecture of macrophage ER and found that the ER-phenotypes associated with virulent (H37Rv) and avirulent (H37Ra) strains were different: a rough ER (RER) with the former against a smooth ER (SER) with the later. Further, the functional attributes of these changes were probed by MS-based quantitative proteomics (133 ER proteins) and lipidomics (8 phospholipids). Our omics approaches not only revealed the host pathogen cross-talk but also emphasized how precisely Mtb uses proteins and lipids in combination to give rise to characteristic ER-phenotypes. H37Ra-infected macrophages increased the cytosolic Ca2+ levels by attenuating the ATP2A2 protein and simultaneous induction of PC/PE expression to facilitate apoptosis. However, H37Rv inhibited apoptosis and further controlled the expression of EST-1 and AMRP proteins to disturb cholesterol homeostasis resulting in sustained infection. This approach offers the potential to decipher the specific roles of ER in understanding the cell biology of mycobacterial infection with special reference to the impact of host response.


2002 ◽  
Vol 1 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Megan Guziewicz ◽  
Toni Vitullo ◽  
Bethany Simmons ◽  
Rebecca Eustance Kohn

The goal of this laboratory exercise is to increase student understanding of the impact of nervous system function at both the organismal and cellular levels. This inquiry-based exercise is designed for an undergraduate course examining principles of cell biology. After observing the movement of Caenorhabditis elegans with defects in their nervous system, students examine the structure of the nervous system to categorize the type of defect. They distinguish between defects in synaptic vesicle transport and defects in synaptic vesicle fusion with membranes. The synaptic vesicles are tagged with green fluorescent protein (GFP), simplifying cellular analysis. The expected outcome of this experiment is that students will better understand the concepts of vesicle transport, neurotransmitter release, GFP, and the relation between the nervous system and behavior.


Reproduction ◽  
2017 ◽  
Vol 153 (1) ◽  
pp. R29-R42 ◽  
Author(s):  
Kevin N Keane ◽  
Vinicius F Cruzat ◽  
Emily K Calton ◽  
Prue H Hart ◽  
Mario J Soares ◽  
...  

Vitamin D (VitD) is an important secosteroid and has attracted attention in several areas of research due to common VitD deficiency in the population, and its potential to regulate molecular pathways related to chronic and inflammatory diseases. VitD metabolites and the VitD receptor (VDR) influence many tissues including those of the reproductive system. VDR expression has been demonstrated in various cell types of the male reproductive tract, including spermatozoa and germ cells, and in female reproductive tissues including the ovaries, placenta and endometrium. However, the molecular role of VitD signalling and metabolism in reproductive function have not been fully established. Consequently, the aim of this work is to review current metabolic and molecular aspects of the VitD–VDR axis in reproductive medicine and to propose the direction of future research. Specifically, the influence of VitD on sperm motility, calcium handling, capacitation, acrosin reaction and lipid metabolism is examined. In addition, we will also discuss the effect of VitD on sex hormone secretion and receptor expression in primary granulosa cells, along with the impact on cytokine production in trophoblast cells. The review concludes with a discussion of the recent developments in VitD–VDR signalling specifically related to altered cellular bioenergetics, which is an emerging concept in the field of reproductive medicine.


2003 ◽  
Vol 374 (3) ◽  
pp. 793-797 ◽  
Author(s):  
Mohabir RAMJEESINGH ◽  
Jackie F. KIDD ◽  
Ling Jun HUAN ◽  
Yanchun WANG ◽  
Christine E. BEAR

CFTR (cystic fibrosis transmembrane conductance regulator) mediates chloride conduction across the apical membrane of epithelia, and mutations in CFTR lead to defective epithelial fluid transport. Recently, there has been considerable interest in determining the quaternary structure of CFTR at the cell surface, as such information is a key to understand the molecular basis for pathogenesis in patients harbouring disease-causing mutations. In our previous work [Ramjeesingh, Li, Kogan, Wang, Huan and Bear (2001) Biochemistry 40, 10700–10706], we showed that monomeric CFTR is the minimal functional form of the protein, yet when expressed in Sf 9 cells using the baculovirus system, it also exists as dimers. The purpose of the present study was to determine if dimeric CFTR exists at the surface of mammalian cells, and particularly in epithelial cells. CFTR solubilized from membranes prepared from Chinese-hamster ovary cells stably expressing CFTR and from T84 epithelial cells migrates as predicted for monomeric, dimeric and larger complexes when subjected to sizing by gel filtration and analysis by non-dissociative electrophoresis. Purification of plasma membranes led to the enrichment of CFTR dimers and this structure exists as the complex glycosylated form of the protein, supporting the concept that dimeric CFTR is physiologically relevant. Consistent with its localization in plasma membranes, dimeric CFTR was labelled by surface biotinylation. Furthermore, dimeric CFTR was captured at the apical surface of intact epithelial cells by application of a membrane-impermeable chemical cross-linker. Therefore it follows from the present study that CFTR dimers exist at the surface of epithelial cells. Further studies are necessary to understand the impact of dimerization on the cell biology of wild-type and mutant CFTR proteins.


Sign in / Sign up

Export Citation Format

Share Document