Imprints of the AD 1755 Tsunami in Algarve (South Portugal) Lowlands and Post-impact Recovery

Author(s):  
P. J. M. Costa ◽  
M. A. Oliveira ◽  
R. González-Villanueva ◽  
C. Andrade ◽  
M. C. Freitas
Keyword(s):  
2017 ◽  
Author(s):  
David A. Kring ◽  
◽  
Martin Schmieder ◽  
Ulrich Riller ◽  
Sarah L. Simpson ◽  
...  

Author(s):  
Mingcong Cao ◽  
Chuan Hu ◽  
Rongrong Wang ◽  
Jinxiang Wang ◽  
Nan Chen

This paper investigates the trajectory tracking control of independently actuated autonomous vehicles after the first impact, aiming to mitigate the secondary collision probability. An integrated predictive control strategy is proposed to mitigate the deteriorated state propagation and facilitate safety objective achievement in critical conditions after a collision. Three highlights can be concluded in this work: (1) A compensatory model predictive control (MPC) strategy is proposed to incorporate a feedforward-feedback compensation control (FCC) method. Based on the definite physical analysis, it is verified that adequate reverse steering and differential torque vectoring render more potentials and flexibility for vehicle post-impact control; (2) With compensatory portions, the deteriorated states after a collision are far beyond the traditional stability envelope. Hence it can be further manipulated in MPC by constraint transformation, rather than introducing soft constraints and decreasing the control efforts on tracking error; (3) Considering time-varying saturation on input, input rate, and slip ratio, the proposed FCC-MPC controller is developed to improve faster deviation attenuation both in lateral and yaw motions. Finally two high-fidelity simulation cases implemented on CarSim-Simulink conjoint platform have demonstrated that the proposed controller has the advanced capabilities of vehicle safety improvement and better control performance achievement after severe impacts.


2021 ◽  
Vol 502 (2) ◽  
pp. 2984-3002
Author(s):  
Lewis Watt ◽  
Zoe Leinhardt ◽  
Kate Y L Su

ABSTRACT In this paper, we present results from a multistage numerical campaign to begin to explain and determine why extreme debris disc detections are rare, what types of impacts will result in extreme debris discs and what we can learn about the parameters of the collision from the extreme debris discs. We begin by simulating many giant impacts using a smoothed particle hydrodynamical code with tabulated equations of state and track the escaping vapour from the collision. Using an N-body code, we simulate the spatial evolution of the vapour generated dust post-impact. We show that impacts release vapour anisotropically not isotropically as has been assumed previously and that the distribution of the resulting generated dust is dependent on the mass ratio and impact angle of the collision. In addition, we show that the anisotropic distribution of post-collision dust can cause the formation or lack of formation of the short-term variation in flux depending on the orientation of the collision with respect to the orbit around the central star. Finally, our results suggest that there is a narrow region of semimajor axis where a vapour generated disc would be observable for any significant amount of time implying that giant impacts where most of the escaping mass is in vapour would not be observed often but this does not mean that the collisions are not occurring.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuan Vinh To ◽  
Fatima A. Nasrallah

AbstractThis data collection contains Magnetic Resonance Imaging (MRI) data, including structural, diffusion, stimulus-evoked, and resting-state functional MRI and behavioural assessment results, including acute post-impact Loss-of-Righting Reflex time and acute, subacute, and longer-term Neural Severity Score, and Open Field Behaviour obtained from a mouse model of concussion. Four cohorts with 43 3–4 months old male mice in total were used: Sham (n = 14, n = 6 day 2, n = 3 day 7, n = 5 day 14), concussion day 2 (CON 2; n = 9), concussion day 7 (CON 7; n = 10), concussion day 14 (CON 14; n = 10). The data collection contains the aforementioned MRI data in compressed NIFTI format, data sheets on animal’s backgrounds and behavioural outcomes and is made publicly available from a data repository. The available data are intended to facility cross-study comparisons, meta-analysis, and science reproducibility.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Miles L. Timpe ◽  
Maria Han Veiga ◽  
Mischa Knabenhans ◽  
Joachim Stadel ◽  
Stefano Marelli

AbstractIn the late stages of terrestrial planet formation, pairwise collisions between planetary-sized bodies act as the fundamental agent of planet growth. These collisions can lead to either growth or disruption of the bodies involved and are largely responsible for shaping the final characteristics of the planets. Despite their critical role in planet formation, an accurate treatment of collisions has yet to be realized. While semi-analytic methods have been proposed, they remain limited to a narrow set of post-impact properties and have only achieved relatively low accuracies. However, the rise of machine learning and access to increased computing power have enabled novel data-driven approaches. In this work, we show that data-driven emulation techniques are capable of classifying and predicting the outcome of collisions with high accuracy and are generalizable to any quantifiable post-impact quantity. In particular, we focus on the dataset requirements, training pipeline, and classification and regression performance for four distinct data-driven techniques from machine learning (ensemble methods and neural networks) and uncertainty quantification (Gaussian processes and polynomial chaos expansion). We compare these methods to existing analytic and semi-analytic methods. Such data-driven emulators are poised to replace the methods currently used in N-body simulations, while avoiding the cost of direct simulation. This work is based on a new set of 14,856 SPH simulations of pairwise collisions between rotating, differentiated bodies at all possible mutual orientations.


2005 ◽  
Vol 74 (3-4) ◽  
pp. 279-300
Author(s):  
Cédric d’Udekem d’Acoz ◽  
Hind Myrieme Chams Echchaoui ◽  
Mohamed Menioui

A new species of amphipod, Bathyporeia watkini sp. nov. from the Atlantic coasts of North Africa is described. This very characteristic species is abundant in some lagoons and estuaries near 28°N. New morphological information on B. elkaimi d’Udekem d’Acoz and Menioui, 2004 is given after specimens that were recently collected on the Atlantic coasts of southern Spain and South Portugal. The male of B. ledoyeri d’Udekem d’Acoz and Menioui, 2004 is described for the first time and new records of North African B. guilliamsoniana (Bate, 1857) and B. chevreuxi d'Udekem d'Acoz and Vader, 2005a are discussed.


2015 ◽  
Vol 47 (3) ◽  
pp. 390-413 ◽  
Author(s):  
António Carlos Valera ◽  
Thomas Xaver Schuhmacher ◽  
Arun Banerjee

Sign in / Sign up

Export Citation Format

Share Document