Structural Conservation of Ras-Related Proteins and Its Functional Implications

Author(s):  
P. Chardin
2021 ◽  
Vol 12 ◽  
Author(s):  
Man Zhang ◽  
Jinhua Xu ◽  
Runsheng Ren ◽  
Guang Liu ◽  
Xiefeng Yao ◽  
...  

Grafting can improve the resistance of watermelon to soil-borne diseases. However, the molecular mechanism of defense response is not completely understood. Herein, we used a proteomic approach to investigate the molecular basis involved in grafted watermelon leaf defense against Fusarium oxysporum f.sp. niveum (FON) infection. The bottle gourd rootstock-grafted (RG) watermelon seedlings were highly resistant to FON compared with self-grafted (SG) watermelon plants, with a disease incidence of 3.4 and 89%, respectively. Meanwhile, grafting significantly induced the activity of pathogenesis-related proteases under FON challenge. Proteins extracted from leaves of RG and SG under FON inoculation were analyzed using two-dimensional gel electrophoresis. Thirty-nine differentially accumulated proteins (DAPs) were identified and classified into 10 functional groups. Accordingly, protein biosynthetic and stress- and defense-related proteins play crucial roles in the enhancement of disease resistance of RG watermelon seedlings, compared with that of SG watermelon seedlings. Proteins involved in signal transduction positively regulated the defense process. Carbohydrate and energy metabolism and photosystem contributed to energy production in RG watermelon seedlings under FON infection. The disease resistance of RG watermelon seedlings may also be related to the improved scavenging capacity of reactive oxygen species (ROS). The expression profile of 10 randomly selected proteins was measured using quantitative real-time PCR, among which, 7 was consistent with the results of the proteomic analysis. The functional implications of these proteins in regulating grafted watermelon response against F. oxysporum are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Isabell Bludau ◽  
Max Frank ◽  
Christian Dörig ◽  
Yujia Cai ◽  
Moritz Heusel ◽  
...  

AbstractTo a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene – so-called proteoforms – that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.


2010 ◽  
Vol 429 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Mike H. Ngo ◽  
Terry R. Colbourne ◽  
Neale D. Ridgway

Cholesterol and its numerous oxygenated derivatives (oxysterols) profoundly affect the biophysical properties of membranes, and positively and negatively regulate sterol homoeostasis through interaction with effector proteins. As the bulk of cellular sterols are segregated from the sensory machinery that controls homoeostatic responses, an important regulatory step involves sterol transport or signalling between membrane compartments. Evidence for rapid, energy-independent transport between organelles has implicated transport proteins, such as the eukaryotic family of OSBP (oxysterol-binding protein)/ORPs (OSBP-related proteins). Since the founding member of this family was identified more than 25 years ago, accumulated evidence has implicated OSBP/ORPs in sterol signalling and/or sterol transport functions. However, recent evidence of sterol transfer activity by OSBP/ORPs suggests that other seemingly disparate functions could be the result of alterations in membrane sterol distribution or ancillary to this primary activity.


2019 ◽  
Author(s):  
A. J. Venkatakrishnan ◽  
Rasmus Fonseca ◽  
Anthony K. Ma ◽  
Scott A. Hollingsworth ◽  
Augustine Chemparathy ◽  
...  

AbstractThe number of structures and molecular dynamics simulations of proteins is exploding owing to dramatic advances in cryo-electron microscopy, crystallography, and computing. One of the most powerful ways to analyze structural information involves comparisons of interatomic interactions across different structures or simulations of the same protein or related proteins from the same family (e.g. different GPCRs). Such comparative analyses are of interest to a wide range of researchers but currently prove challenging for all but a few. To facilitate comparative structural analyses, we have developed tools for (i) rapidly computing and comparing interatomic interactions and (ii) interactively visualizing interactions to enable structure-based interpretations. Using these tools, we have developed the Contact Comparison Atlas, a web-based resource for the comparative analysis of interactions in structures and simulations of proteins. Using the Contact Comparison Atlas and our tools, we have identified patterns of interactions with functional implications in structures of G-protein-coupled receptors, G proteins and kinases and in the dynamics of muscarinic receptors. The Contact Comparison Atlas can be used to enable structure modeling, drug discovery, protein engineering, and the prediction of disease-associated mutations.Contact Comparison Atlas website: https://getcontacts.github.io/atlas/


Author(s):  
M.C. Castillo-Jessen ◽  
A. González-Angulo

Information regarding the normal morphology of uterine blood vessels at ultrastructural level in mammals is scarce Electron microscopy studies dealing with endometrial vasculature despite the functional implications due to hormone priming are not available. Light microscopy observations with combined injection of dyes and microradiography along with histochemical studies does not enable us to know the detailed fine structure of the possible various types of blood vessels in this tissue. The present work has been designed to characterize the blood vessels of endometrium of mice as well as the behavior of the endothelium to injection of low molecular weight proteins during the normal estrous cycle in this animal. One hundred and forty female albino mice were sacrificed after intravascular injection of horse radish peroxidase (HRP) at 30 seconds, 5, 15, 30 and 60 minutes.


1997 ◽  
Vol 23 (3) ◽  
pp. 141-149 ◽  
Author(s):  
D. S. Tews ◽  
H. H. Goebel ◽  
I. Schneider ◽  
A. Gunkel ◽  
E. Stennert ◽  
...  

GeroPsych ◽  
2013 ◽  
Vol 26 (3) ◽  
pp. 185-199 ◽  
Author(s):  
Christina Röcke ◽  
Annette Brose

Whereas subjective well-being remains relatively stable across adulthood, emotional experiences show remarkable short-term variability, with younger and older adults differing in both amount and correlates. Repeatedly assessed affect data captures both the dynamics and stability as well as stabilization that may indicate emotion-regulatory processes. The article reviews (1) research approaches to intraindividual affect variability, (2) functional implications of affect variability, and (3) age differences in affect variability. Based on this review, we discuss how the broader literature on emotional aging can be better integrated with theories and concepts of intraindividual affect variability by using appropriate methodological approaches. Finally, we show how a better understanding of affect variability and its underlying processes could contribute to the long-term stabilization of well-being in old age.


1996 ◽  
Vol 96 (4) ◽  
pp. 585-592 ◽  
Author(s):  
Randal W. Giroux ◽  
K. Peter Pauls

2006 ◽  
Vol 114 (S 1) ◽  
Author(s):  
B Trojanowicz ◽  
Z Chen ◽  
J Bialek ◽  
Y Radestock ◽  
S Hombach-Klonisch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document