Calculation of the unsteady-state aerodynamic characteristics of three-dimensional bearing systems

1977 ◽  
Vol 11 (1) ◽  
pp. 157-160
Author(s):  
S. A. Popytalov
Author(s):  
Jie Gao ◽  
Chunde Tao ◽  
Dongchen Huo ◽  
Guojie Wang

Marine, industrial, turboprop and turboshaft gas turbine engines use nonaxisymmetric exhaust volutes for flow diffusion and pressure recovery. These processes result in a three-dimensional complex turbulent flow in the exhaust volute. The flows in the axial turbine and nonaxisymmetric exhaust volute are closely coupled and inherently unsteady, and they have a great influence on the turbine and exhaust aerodynamic characteristics. Therefore, it is very necessary to carry out research on coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics, so as to provide reference for the high-efficiency turbine-volute designs. This paper summarizes and analyzes the recent advances in the field of coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics for turbomachinery. This review covers the following topics that are important for turbine and volute coupled designs: (1) flow and loss characteristics of nonaxisymmetric exhaust volutes, (2) flow interactions between axial turbine and nonaxisymmetric exhaust volute, (3) improvement of turbine and volute performance within spatial limitations and (4) research methods of coupled turbine and exhaust volute aerodynamics. The emphasis is placed on the turbine-volute interactions and performance improvement. We also present our own insights regarding the current research trends and the prospects for future developments.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 172
Author(s):  
Hengtao Shi

Recently, a new type of low-loss variable inlet guide vane (VIGV) was proposed for improving a compressor’s performance under off-design conditions. To provide more information for applications, this work investigated the effect of the Reynolds number and clearance flow on the aerodynamic characteristics of this new type of VIGV. The performance and flow field of two representative airfoils with different chord Reynolds numbers were studied with the widely used commercial software ANSYS CFX after validation was completed. Calculations indicate that, with the decrease in the Reynolds number Rec, the airfoil loss coefficient ω and deviation δ first increase slightly and then entered a high growth rate in a low range of Rec. Afterwards, a detailed boundary-layer analysis was conducted to reveal the flow mechanism for the airfoil performance degradation with a low Reynolds number. For the design point, it is the appearance and extension of the separation region on the rear portion; for the maximum incidence point, it is the increase in the length and height of the separation region on the former portion. The three-dimensional VIGV research confirms the Reynolds number effect on airfoils. Furthermore, the clearance leakage flow forms a strong stream-wise vortex by injection into the mainflow, resulting in a high total-pressure loss and under-turning in the endwall region, which shows the potential benefits of seal treatment.


2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


Author(s):  
Hidekazu Kodama ◽  
Masanobu Namba

A lifting surface theory is developed to predict the unsteady three-dimensional aerodynamic characteristics for a rotating subsonic annular cascade of swept blades. A discrete element method is used to solve the integral equation for the unsteady blade loading. Numerical examples are presented to demonstrate effects of the sweep on the blade flutter and on the acoustic field generated by interaction of rotating blades with a convected sinusoidal gust. It is found that increasing the sweep results in decrease of the aerodynamic work on vibrating blades and also remarkable reduction of the modal acoustic power of lower radial orders for both forward and backward sweeps.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


1982 ◽  
Author(s):  
M. Namba ◽  
A. Ishikawa

A lifting surface theory is developed for unsteady three-dimensional flow in rotating subsonic, transonic and supersonic annular cascades with fluctuating blade loadings. Application of a finite radial eigenfunction series approximation not only affords a clear insight into the three-dimensional structures of acoustic fields but also provides mathematical expressions advantageous to numerical work. The theory is applied to oscillating blades. Numerical examples are presented to demonstrate three-dimensional effects on aerodynamic characteristics. Three-dimensional effects in supersonic cascades are generally small and strip theory predicts local aerodynamic forces as well as total aerodynamic forces with good accuracy. In transonic flow, however, the strip theory approximation breaks down near the sonic span station and three-dimensional effects are of primary importance.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


Sign in / Sign up

Export Citation Format

Share Document