Hot-cold hemolysis: The role of positively charged membrane phospholipids

1972 ◽  
Vol 28 (5) ◽  
pp. 565-566 ◽  
Author(s):  
J. W. Meduski ◽  
P. Hochstein
2021 ◽  
Vol 22 (9) ◽  
pp. 4637
Author(s):  
Daniel Barth ◽  
Andreas Lückhoff ◽  
Frank J. P. Kühn

The human apoptosis channel TRPM2 is stimulated by intracellular ADR-ribose and calcium. Recent studies show pronounced species-specific activation mechanisms. Our aim was to analyse the functional effect of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), commonly referred to as PIP2, on different TRPM2 orthologues. Moreover, we wished to identify the interaction site between TRPM2 and PIP2. We demonstrate a crucial role of PIP2, in the activation of TRPM2 orthologues of man, zebrafish, and sea anemone. Utilizing inside-out patch clamp recordings of HEK-293 cells transfected with TRPM2, differential effects of PIP2 that were dependent on the species variant became apparent. While depletion of PIP2 via polylysine uniformly caused complete inactivation of TRPM2, restoration of channel activity by artificial PIP2 differed widely. Human TRPM2 was the least sensitive species variant, making it the most susceptible one for regulation by changes in intramembranous PIP2 content. Furthermore, mutations of highly conserved positively charged amino acid residues in the membrane interfacial cavity reduced the PIP2 sensitivity in all three TRPM2 orthologues to varying degrees. We conclude that the membrane interfacial cavity acts as a uniform PIP2 binding site of TRPM2, facilitating channel activation in the presence of ADPR and Ca2+ in a species-specific manner.


2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


1991 ◽  
Vol 260 (3) ◽  
pp. H877-H883 ◽  
Author(s):  
M. R. Prasad ◽  
L. M. Popescu ◽  
I. I. Moraru ◽  
X. K. Liu ◽  
S. Maity ◽  
...  

We investigated the role of phospholipase A2 (PLA2) and phospholipase C (PLC) in myocardial phosholipid degradation and cellular injury during reperfusion of ischemic myocardium. For this purpose, isolated rat hearts were perfused with isotopic arachidonic acid to label its membrane phospholipids. Hearts preperfused with antiphospholipase A2 (anti-PLA2) retained a significantly higher amount of radiolabel in phosphatidylcholine and phosphatidylinositol and a corresponding lower amount of radiolabel in lysophosphatidylcholine and nonesterified fatty acids (P less than 0.05) after 30 min of reperfusion following 30 min of normothermic global ischemia compared with hearts preperfused with nonimmune immunoglobulin G. In similar experiments, antiphospholipase C (anti-PLC)-treated hearts were associated with significantly (P less than 0.05) higher radiolabel in all phospholipids and lower radiolabel in diacyglycerol compared with nonimmune immunoglobulin G-treated hearts. Measurement of phospholipase activity in subcellular organelles of these hearts showed decreased PLA2 activity in cytosol, mitochondria, and microsomes of anti-PLA2-treated hearts and decreased PLC activity of microsomes in anti-PLC-treated hearts. Furthermore, both the antiphospholipases attenuated the release of creatine kinase and lactate dehydrogenase into perfusate and increased contractility as well as coronary flow in the reperfused hearts. Results of this study suggest that both PLA2 and PLC are involved in the degradation of phospholipids and cellular injury that occur during reperfusion of ischemic myocardium.


2007 ◽  
Vol 74 ◽  
pp. 223-246 ◽  
Author(s):  
Robert H. Michell

Several of the nine hexahydroxycylohexanes (inositols) have functions in Biology, with myo-inositol (Ins) in most of the starring roles; and Ins polyphosphates are amongst the most abundant organic phosphate constituents on Earth. Many Archaea make Ins and use it as a component of diphytanyl membrane phospholipids and the thermoprotective solute di-L-Ins-1,1′-phosphate. Few bacteria make Ins or use it, other than as a carbon source. Those that do include hyperthermophilic Thermotogales (which also employ di-l-Ins-1,1′-phosphate) and actinomycetes such as Mycobacterium spp. (which use mycothiol, an inositol-containing thiol, as an intracellular redox reagent and have characteristic phosphatidylinositol-linked surface oligosaccharides). Bacteria acquired their Ins3P synthases by lateral gene transfer from Archaea. Many eukaryotes, including stressed plants, insects, deep-sea animals and kidney tubule cells, adapt to environmental variation by making or accumulating diverse inositol derivatives as ‘compatible’ solutes. Eukaryotes use phosphatidylinositol derivatives for numerous roles in cell signalling and regulation and in protein anchoring at the cell surface. Remarkably, the diradylglycerol cores of archaeal and eukaryote/bacterial glycerophospholipids have mirror image configurations: sn-2,3 and sn-1,2 respectively. Multicellular animals and amoebozoans exhibit the greatest variety of functions for PtdIns derivatives, including the use of PtdIns(3,4,5)P3 as a signal. Evolutionarily, it seems likely that (i) early archaeons first made myo-inositol approx. 3500 Ma (million years) ago; (ii) archeons brought inositol derivatives into early eukaryotes (approx. 2000 Ma?); (iii) soon thereafter, eukaryotes established ubiquitous functions for phosphoinositides in membrane trafficking and Ins polyphosphate synthesis; and (iv) since approx. 1000 Ma, further waves of functional diversification in amoebozoans and metazoans have introduced Ins(1,4,5)P3 receptor Ca2+ channels and the messenger role of PtdIns(3,4,5)P3.


Biochemistry ◽  
2015 ◽  
Vol 54 (14) ◽  
pp. 2303-2313 ◽  
Author(s):  
Tuan Hoang ◽  
Tijana Matovic ◽  
James Parker ◽  
Matthew D. Smith ◽  
Masoud Jelokhani-Niaraki

Development ◽  
2021 ◽  
pp. dev.196956
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be fully elucidated. Here we show that, similar to the recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yali Ci ◽  
Yang Yang ◽  
Caimin Xu ◽  
Cheng-Feng Qin ◽  
Lei Shi

Flavivirus replication occurs in membranous replication compartments, also known as replication organelles (ROs) derived from the host ER membrane. Our previous study showed that the non-structural (NS) protein 1 (NS1) is the essential factor for RO creation by hydrophobic insertion into the ER membrane. Here, we found that the association of NS1 with the membrane can be facilitated by the electrostatic interaction between NS1 and negatively charged lipids. NS1 binds to a series of negatively charged lipids, including PI4P, and a positively charged residue, R31, located on the membrane-binding face of NS1, plays important roles in this interaction. The NS1 R31E mutation significantly impairs NS1 association with negatively charged membrane and its ER remodeling ability in the cells. To interfere with the electrostatic interaction between NS1 and negatively charged lipids, intracellular phosphatidylinositol phosphates (PIPs) level was downregulated by the overexpression of Sac1 or treatment with PI3K and PI4K inhibitors to attenuate flavivirus replication. Our findings emphasize the importance of electrostatic interaction between NS1 and negatively charged lipids in flavivirus RO formation.


Sign in / Sign up

Export Citation Format

Share Document