scholarly journals Maximizing efficiency of genomic selection in CIMMYT’s tropical maize breeding program

Author(s):  
Sikiru Adeniyi Atanda ◽  
Michael Olsen ◽  
Juan Burgueño ◽  
Jose Crossa ◽  
Daniel Dzidzienyo ◽  
...  

Abstract Key message Historical data from breeding programs can be efficiently used to improve genomic selection accuracy, especially when the training set is optimized to subset individuals most informative of the target testing set. Abstract The current strategy for large-scale implementation of genomic selection (GS) at the International Maize and Wheat Improvement Center (CIMMYT) global maize breeding program has been to train models using information from full-sibs in a “test-half-predict-half approach.” Although effective, this approach has limitations, as it requires large full-sib populations and limits the ability to shorten variety testing and breeding cycle times. The primary objective of this study was to identify optimal experimental and training set designs to maximize prediction accuracy of GS in CIMMYT’s maize breeding programs. Training set (TS) design strategies were evaluated to determine the most efficient use of phenotypic data collected on relatives for genomic prediction (GP) using datasets containing 849 (DS1) and 1389 (DS2) DH-lines evaluated as testcrosses in 2017 and 2018, respectively. Our results show there is merit in the use of multiple bi-parental populations as TS when selected using algorithms to maximize relatedness between the training and prediction sets. In a breeding program where relevant past breeding information is not readily available, the phenotyping expenditure can be spread across connected bi-parental populations by phenotyping only a small number of lines from each population. This significantly improves prediction accuracy compared to within-population prediction, especially when the TS for within full-sib prediction is small. Finally, we demonstrate that prediction accuracy in either sparse testing or “test-half-predict-half” can further be improved by optimizing which lines are planted for phenotyping and which lines are to be only genotyped for advancement based on GP.

2021 ◽  
Author(s):  
Ao Zhang ◽  
Shan Chen ◽  
Zhenhai Cui ◽  
Yubo Liu ◽  
Yuan Guan ◽  
...  

Abstract Drought tolerance in maize is a complex and polygenic trait, especially in the seedling stage. In plant breeding, such traits can be improved by genomic selection (GS), which has become a practical and effective tool. In the present study, a natural maize population named Northeast China core population (NCCP) consisting of 379 inbred lines were genotyped with diversity arrays technology (DArT) and genotyping-by-sequencing (GBS) platforms. Target traits of seedling emergence rate (ER), seedling plant height (SPH), and grain yield (GY) were evaluated under two natural drought environments in northeast China. adequate genetic variants have been found for genomic selection, they are not stable enough between two years. Similarly, the heritability of the three traits is not stable enough, and the heritabilities in 2019 (0.88, 0.82, 0.85 for ER, SPH, GY) are higher than that in 2020 (0.65, 0.53, 0.33) and cross-two-year (0.32, 0.26, 0.33). The current research obtained two kinds of marker sets: the SilicoDArT markers were from DArT-seq, and SNPs were from the GBS and DArT-seq. In total, a number of 11,865 SilicoDArT, 7,837 DArT's SNPs, and 91,003 GBS SNPs were used for analysis after quality control. The results of phylogenetic trees showed that the population was rich in consanguinity. Genomic prediction results showed that the average prediction accuracies estimated using the DArT SNP dataset under the 2-fold cross-validation scheme were 0.27, 0.19, and 0.33, for ER, SPH, and GY, respectively. The result of SilicoDArT is close to the SNPs from DArT-seq, those were 0.26, 0.22, and 0.33. For SPH, the prediction accuracies using SilicoDArT were more than ones using DArT SNP, In some cases, alignment to the reference genome results in a loss to the prediction. The trait with lower heritability can improve the prediction accuracy using filtering of linkage disequilibrium. For the same trait, the prediction accuracy estimated with two types of DArT markers was consistently higher than those estimated with the GBS SNPs under the same genotyping cost. Our results show the prediction accuracy has been improved in some cases of controlling population structure and marker quality, even when the density of the marker is reduced. In the initial maize breeding cycle, Silicodart markers can obtain higher prediction accuracy with a lower cost. However, higher marker density platforms i.e. GBS may play a role in the following breeding cycle for the long term. The natural drought experimental station can reduce the difficulty of phenotypic identification in a water-scarce environment. The accumulation of more yearly data will help to stabilize the heritability and improve predictive accuracy in maize breeding. The experimental design and model for drought resistance also need to be further developed.


2021 ◽  
Vol 12 ◽  
Author(s):  
◽  
Aline Fugeray-Scarbel ◽  
Catherine Bastien ◽  
Mathilde Dupont-Nivet ◽  
Stéphane Lemarié

The present study is a transversal analysis of the interest in genomic selection for plant and animal species. It focuses on the arguments that may convince breeders to switch to genomic selection. The arguments are classified into three different “bricks.” The first brick considers the addition of genotyping to improve the accuracy of the prediction of breeding values. The second consists of saving costs and/or shortening the breeding cycle by replacing all or a portion of the phenotyping effort with genotyping. The third concerns population management to improve the choice of parents to either optimize crossbreeding or maintain genetic diversity. We analyse the relevance of these different bricks for a wide range of animal and plant species and sought to explain the differences between species according to their biological specificities and the organization of breeding programs.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Sirlene Viana de Faria ◽  
Leandro Tonello Zuffo ◽  
Wemerson Mendonça Rezende ◽  
Diego Gonçalves Caixeta ◽  
Hélcio Duarte Pereira ◽  
...  

Abstract Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jana Obšteter ◽  
Janez Jenko ◽  
Gregor Gorjanc

This paper evaluates the potential of maximizing genetic gain in dairy cattle breeding by optimizing investment into phenotyping and genotyping. Conventional breeding focuses on phenotyping selection candidates or their close relatives to maximize selection accuracy for breeders and quality assurance for producers. Genomic selection decoupled phenotyping and selection and through this increased genetic gain per year compared to the conventional selection. Although genomic selection is established in well-resourced breeding programs, small populations and developing countries still struggle with the implementation. The main issues include the lack of training animals and lack of financial resources. To address this, we simulated a case-study of a small dairy population with a number of scenarios with equal available resources yet varied use of resources for phenotyping and genotyping. The conventional progeny testing scenario collected 11 phenotypic records per lactation. In genomic selection scenarios, we reduced phenotyping to between 10 and 1 phenotypic records per lactation and invested the saved resources into genotyping. We tested these scenarios at different relative prices of phenotyping to genotyping and with or without an initial training population for genomic selection. Reallocating a part of phenotyping resources for repeated milk records to genotyping increased genetic gain compared to the conventional selection scenario regardless of the amount and relative cost of phenotyping, and the availability of an initial training population. Genetic gain increased by increasing genotyping, despite reduced phenotyping. High-genotyping scenarios even saved resources. Genomic selection scenarios expectedly increased accuracy for young non-phenotyped candidate males and females, but also proven females. This study shows that breeding programs should optimize investment into phenotyping and genotyping to maximize return on investment. Our results suggest that any dairy breeding program using conventional progeny testing with repeated milk records can implement genomic selection without increasing the level of investment.


Crop Science ◽  
2017 ◽  
Vol 57 (3) ◽  
pp. 1325-1337 ◽  
Author(s):  
Alexandra Duhnen ◽  
Amandine Gras ◽  
Simon Teyssèdre ◽  
Michel Romestant ◽  
Bruno Claustres ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Christian R. Werner ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
John M. Hickey ◽  
Tobias Kox ◽  
...  

Over the last two decades, the application of genomic selection has been extensively studied in various crop species, and it has become a common practice to report prediction accuracies using cross validation. However, genomic prediction accuracies obtained from random cross validation can be strongly inflated due to population or family structure, a characteristic shared by many breeding populations. An understanding of the effect of population and family structure on prediction accuracy is essential for the successful application of genomic selection in plant breeding programs. The objective of this study was to make this effect and its implications for practical breeding programs comprehensible for breeders and scientists with a limited background in quantitative genetics and genomic selection theory. We, therefore, compared genomic prediction accuracies obtained from different random cross validation approaches and within-family prediction in three different prediction scenarios. We used a highly structured population of 940 Brassica napus hybrids coming from 46 testcross families and two subpopulations. Our demonstrations show how genomic prediction accuracies obtained from among-family predictions in random cross validation and within-family predictions capture different measures of prediction accuracy. While among-family prediction accuracy measures prediction accuracy of both the parent average component and the Mendelian sampling term, within-family prediction only measures how accurately the Mendelian sampling term can be predicted. With this paper we aim to foster a critical approach to different measures of genomic prediction accuracy and a careful analysis of values observed in genomic selection experiments and reported in literature.


Author(s):  
Xabi Cazenave ◽  
Bernard Petit ◽  
Marc Lateur ◽  
Hilde Nybom ◽  
Jiri Sedlak ◽  
...  

Abstract Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e. genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


2022 ◽  
Author(s):  
Irene S. Breider ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
Steve Thorn ◽  
Manish K. Pandey ◽  
...  

Abstract Some of the most economically important traits in plant breeding show highly polygenic inheritance. Genetic variation is a key determinant of the rates of genetic improvement in selective breeding programs. Rapid progress in genetic improvement comes at the cost of a rapid loss of genetic variation. Germplasm available through expired Plant Variety Protection (exPVP) lines is a potential resource of variation previously lost in elite breeding programs. Introgression for polygenic traits is challenging, as many genes have a small effect on the trait of interest. Here we propose a way to overcome these challenges with a multi-part pre-breeding program that has feedback pathways to optimise recurrent genomic selection. The multi-part breeding program consists of three components, namely a bridging component, population improvement, and product development. Parameters influencing the multi-part program were optimised with the use of a grid search. Haploblock effect and origin were investigated. Results showed that the introgression of exPVP germplasm using an optimised multi-part breeding strategy resulted in 1.53 times higher genetic gain compared to a two-part breeding program. Higher gain was achieved through reducing the performance gap between exPVP and elite germplasm and breaking down linkage drag. Both first and subsequent introgression events showed to be successful. In conclusion, the multi-part breeding strategy has a potential to improve long-term genetic gain for polygenic traits and therefore, potential to contribute to global food security.


2021 ◽  
Author(s):  
Xabi Cazenave ◽  
Bernard Petit ◽  
Francois Laurens ◽  
Charles-Eric Durel ◽  
Helene Muranty

Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e. genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and were always highest when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


2020 ◽  
Vol 30 (3) ◽  
pp. 356-364 ◽  
Author(s):  
Seth D. Wannemuehler ◽  
Chengyan Yue ◽  
William W. Shane ◽  
R. Karina Gallardo ◽  
Vicki McCracken

Marker-assisted selection (MAS) use in breeding programs allows for examination of seedlings at an early stage before accumulation of high field costs. However, introducing MAS into a breeding program implies additional costs and uncertainties about effective incorporation. Previous simulations in apple (Malus ×domestica) have shown cost-effective applications of MAS. To further evaluate MAS cost-effectiveness in perennial crops, we conducted a cost-effectiveness analysis examining MAS in an upper midwestern U.S. peach (Prunus persica) breeding program. Breeding program procedures and associated costs were collected and used as input into spreadsheet-based simulations of the breeding program. Simulations compared a conventional breeding program to MAS with varying cull rates of low, medium, and high at multiple stages in the breeding cycle. Cost-effective MAS implementation was identified at the end of seedling trials with a break-even cull rate of 4%. These results inform breeders of cost-effectiveness of MAS use in a peach breeding program.


Sign in / Sign up

Export Citation Format

Share Document