Development of a low-cost epoxy resin mold with high cooling efficiency

2021 ◽  
Vol 113 (7-8) ◽  
pp. 2065-2086
Author(s):  
Chil-Chyuan Kuo ◽  
Jia-Qi Wu
2020 ◽  
Vol 1 (2) ◽  
pp. 28-32

In this study epoxy phenol novalac resin which consists of silica nanoparticles and unsaturated poly ester resin linked to the Silane and cross linking to that structure and also parameters affecting the processes involved have been evaluated. Cross linking in phenol novalac epoxy resins effects on many properties such as thermal, electrical, mechanical and chemical attributes especially in elevated temperatures. Silane cross-linking’s in phenol novalac epoxy resin with respect to other methods like proxiding, irradiation and utilization of Azo compounds, looks to be a very simple and low cost route, which makes it very encouraging for various industries. Unsaturated poly ester resin is compatible with phenol novalac epoxy resin and also creates some cross-linking and as far as tri methoxy Silane is added to the mentioned resin, its thermal, physical and mechanical properties are optimized. In this literature impact, tension, glass transition temperature, humidity absorption, FTIR and Scanning electron microscopy (SEM) tests were done and the results revealed that as the cross-linking occurs, tension in rupture region increases. This increase is more common at elevated temperatures. The growth in content of silica nanoparticles leads to a drop in water permeability of phenol novalac epoxy resin nanocomposite which contains unsaturated poly ester resin.


2012 ◽  
Vol 7 (2_suppl) ◽  
pp. 155892501200702
Author(s):  
Ruslan Burtovyy ◽  
Binyamin Rubin ◽  
Mahmut O. Kesimci ◽  
Igor Luzinov ◽  
Jeffery Owens ◽  
...  

We developed a Surface Differential Scanning Calorimeter for the quantitative analyses of thermodynamic and heat transfer properties of thin fibrous and porous samples. It has been demonstrated that the calorimeter is capable of measuring cooling power as well as temperature decrease in a reliable and reproducible way. Considering its low cost the equipment can be a valuable option for studying cooling/heating systems in laboratory settings.


2013 ◽  
Vol 694-697 ◽  
pp. 3012-3015
Author(s):  
Yong Ping Zhang ◽  
Long Liu ◽  
Yun Cui Zhang ◽  
Guang Ye Wang ◽  
De Sheng Li ◽  
...  

The configuration of LED street lamp is important for its high security and low cost requirements. The modular method is introduced to design LED street lamp with independent light source and heat dissipation structure. In the single module heat pipe technology radiator is used to improve the LED street lamp of the cooling efficiency. For the 60W LED module, the optical lens are designed with the angles of 60 ° and 30 ° respectively and the average temperature is 329 K on each observation sides of the module.


2015 ◽  
Vol 220-221 ◽  
pp. 767-773 ◽  
Author(s):  
Ilmars Brensons ◽  
Svetlana Polukoshko ◽  
Andris Silins ◽  
Natalija Mozga

Fused Deposition Modeling (FDM) is one of most common ways of rapidly producing a part. Heated material (most commonly – plastic) is used to extrude it through a nozzle and deposit on a surface layer by layer until the part is fully produced. FDM has become one of the most popular in rapid production area due to its low cost, available materials and versatility.Due to fact that part is made layer by layer and each additional layer is deposited on top of a layer that is already a little below material melting point, part maintains different mechanical properties in various directions. These varying mechanical properties affect the part usability in practical applications. Critical point is tensile strength.The objective of this paper is to research optimal processing parameters for FDM prototyping to improve tensile strength. Several rapid prototype models (tensile test samples) with various geometry of longitudinal reinforcement channels were built. As reinforcing material, the epoxy resin was used, because it has higher tensile strength when solid and allows filling channels with various geometry. All made samples were tested for tensile strength. Experiment was carried out to confirm the effectiveness of this approach. From the results, it is found how different amount of epoxy resin affects part tensile strength.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1833
Author(s):  
Shaoyi Xu ◽  
Qiang Peng ◽  
Fangfang Xing ◽  
Hongyu Xue ◽  
Junwen Sun ◽  
...  

This paper presents the design, fabrication, and characterization of a compact current sensor based on magnetostrictive composites and resistance strain gauges. Firstly, we designed three kinds of current sensors with different structures, in which the shape of the giant magnetostrictive material (GMM) was cuboid, cylindrical, and semi-cylindrical. A set of finite element method (FEM) simulations were performed to qualitatively guide the design of three prototypes of the current sensor. It was determined that the most ideal shape of the GMM was semi-cylindrical. Secondly, Terfenol-D (TD) powder and epoxy resin were mixed to prepare magnetostrictive composites. In this paper, magnetostrictive composites with different particle size ranges and mass ratio were prepared and tested. The results show that the magnetostrictive composites had the best performance when the particle size range was 149–500 μm and the mass ratio of epoxy resin to TD powder was 1:5. Finally, this paper tested the performance of the sensor. The sensitivity, repeatability, and linear working range of the sensor reached 0.104 με/A, 2.51%, and 100–900 A respectively, when only 0.31 g of TD powder was employed. This means that current measurement with low cost, high sensitivity, and wide range was realized.


2008 ◽  
Vol 47-50 ◽  
pp. 536-539 ◽  
Author(s):  
H. Ku ◽  
F. Cardona ◽  
D. Rogers ◽  
A. Vandenbroucke

Low cost composite materials are widely used in civil and structural engineering applications. This project uses EPON to plasticize a commonly used resin, epoxy resin to lower the cost of the composite and to find out the mechanical and thermal properties of the plasticized epoxy resin to see if it is suitable for the said applications. Three point bending tests were carried out to evaluate the flexural properties of the plasticized resins. Differential scanning calorimetry and dynamic mechanical thermal analysis are used to evaluate the thermal properties of the plasticized epoxy resin. The study with epoxy and EPON showed that the mechanical properties of the epoxy composite were lowered but its ability to dissipate energy increased because of its improved thermal properties. As EPON is much cheaper that epoxy resin, the composite produced is therefore cheaper and provided the service requirements were not so demanding, it can be used in the said applications.


2014 ◽  
Vol 665 ◽  
pp. 307-310 ◽  
Author(s):  
Chun Feng Sun ◽  
Ming Gao

The cheaper phosphoric acid was uesd to replace the phosphorus oxychloride, starch was used to replace pentaerythritol and water as solvent to synthesize a new low-cost intumescent flame retardant (IFR)—starch phosphate ethylenediamine salts. The structure of the IFR was characterized with infrared spectroscopy. The IFR was used to impart flame retardancy to the Epoxy self-leveling floor (Epoxy Resin, EP) to get the fireproof Epoxy self-leveling floor. The results of test showed that 20% of IFR limit oxygen index of EP/IFR composite reach 31.0%. The results show that flame retardant catalyze the pyrolysis of epoxy resin into charcoal; Vertical burning passed UL94 V-0 rating.


2015 ◽  
Vol 719-720 ◽  
pp. 50-54
Author(s):  
Andressa Cecília Milanese ◽  
Kelly Cristina Coelho de Carvalho Benini ◽  
Maria Odila Hilário Cioffi ◽  
Herman Jacobus Cornelis Voorwald

Nowadays, polymeric composites reinforced with natural fibers are being considered in the civil engineering area. The use of polymeric composites to reinforce degraded timber structures can improve its behavior. Fibers with larger structural applications are glass and carbon but the use of natural fibers is an economical alternative and posses many advantages such as biodegradability, low cost and is derived from natural and renewable sources. Epoxy composite reinforced with sisal fabric was processed by resin transfer molding (RTM) at room temperature and this work studies thermal behavior and its respective mechanism of thermal decomposition. Samples of sisal fiber, epoxy resin and sisal/epoxy composite were characterized by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Thermogravimetric curves showed that sisal fibers can be used in manufacturing process where the processing temperature does not exceed 177°C and shown that the epoxy resin has the greatest stability material followed by sisal/epoxy composite.


Sign in / Sign up

Export Citation Format

Share Document