scholarly journals Enigmatic mechanism of the N-vinylpyrrolidone hepatocarcinogenicity in the rat

Author(s):  
Franz Oesch ◽  
Daniela Fruth ◽  
Jan G. Hengstler ◽  
Eric Fabian ◽  
Franz Ingo Berger ◽  
...  

AbstractN-vinyl pyrrolidone (NVP) is produced up to several thousand tons per year as starting material for the production of polymers to be used in pharmaceutics, cosmetics and food technology. Upon inhalation NVP was carcinogenic in the rat, liver tumor formation is starting already at the rather low concentration of 5 ppm. Hence, differentiation whether NVP is a genotoxic carcinogen (presumed to generally have no dose threshold for the carcinogenic activity) or a non-genotoxic carcinogen (with a potentially definable threshold) is highly important. In the present study, therefore, the existing genotoxicity investigations on NVP (all showing consistently negative results) were extended and complemented with investigations on possible alternative mechanisms, which also all proved negative. All tests were performed in the same species (rat) using the same route of exposure (inhalation) and the same doses of NVP (5, 10 and 20 ppm) as had been used in the positive carcinogenicity test. Specifically, the tests included an ex vivo Comet assay (so far not available) and an ex vivo micronucleus test (in contrast to the already available micronucleus test in mice here in the same species and by the same route of application as in the bioassay which had shown the carcinogenicity), tests on oxidative stress (non-protein-bound sulfhydryls and glutathione recycling test), mechanisms mediated by hepatic receptors, the activation of which had been shown earlier to lead to carcinogenicity in some instances (Ah receptor, CAR, PXR, PPARα). No indications were obtained for any of the investigated mechanisms to be responsible for or to contribute to the observed carcinogenicity of NVP. The most important of these exclusions is genotoxicity. Thus, NVP can rightfully be regarded and treated as a non-genotoxic carcinogen and threshold approaches to the assessment of this chemical are supported. However, the mechanism underlying the carcinogenicity of NVP in rats remains unclear.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathalie M. Schmidt ◽  
Peter A. C. Wing ◽  
Mariana O. Diniz ◽  
Laura J. Pallett ◽  
Leo Swadling ◽  
...  

AbstractDetermining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells. ACAT inhibition reduces CD8+ T cell neutral lipid droplets and promotes lipid microdomains, enhancing TCR signalling and TCR-independent bioenergetics. Dysfunctional HBV- and HCC-specific T cells are rescued by ACAT inhibitors directly ex vivo from human liver and tumour tissue respectively, including tissue-resident responses. ACAT inhibition enhances in vitro responsiveness of HBV-specific CD8+ T cells to PD-1 blockade and increases the functional avidity of TCR-gene-modified T cells. Finally, ACAT regulates HBV particle genesis in vitro, with inhibitors reducing both virions and subviral particles. Thus, ACAT inhibition provides a paradigm of a metabolic checkpoint able to constrain tumours and viruses but rescue exhausted T cells, rendering it an attractive therapeutic target for the functional cure of HBV and HBV-related HCC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiao-Le Yu ◽  
Shing Chan ◽  
Marcus Kwong-Lam Fung ◽  
Godfrey Chi-Fung Chan

Abstract Background Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. Methods An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. Results hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. Conclusions hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy.


Author(s):  
Yi Chieh Lim ◽  
Kathleen S Ensbey ◽  
Carolin Offenhäuser ◽  
Rochelle C J D’souza ◽  
Jason K Cullen ◽  
...  

Abstract Background Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. Methods In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. Results Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell–like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. Conclusion Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.


2009 ◽  
Vol 1 (1) ◽  
pp. 32 ◽  
Author(s):  
Christian Hendrich ◽  
Franz Engelmaier ◽  
Gerhart Waertel ◽  
Rolf Krebs ◽  
Marcus Jäger

The clinical application of cellular based therapies with ex vivo cultivation for the treatment of diseases of the musculoskeletal system has until now been limited. In particular, the advanced laboratory and technical effort necessary, regulatory issues as well as high costs are major obstacles. On the other hand, newly developed cell therapy systems permit intra-operative enrichment and application of mesenchymal and progenitor stem cells from bone marrow aspirate concentrate (BMAC) in one single operative session. The objective of the present clinical surveillance study was to evaluate new bone formation after the application of BMAC as well as to record any possible therapy-specific complications For this purpose, the clinical-radiological progress of a total of 101 patients with various bone healing disturbances was documented (surveillance study). The study included 37 necrosis of the head of the femur, 32 avascular necroses/bone marrow edema of other localization, 12 non-unions, 20 other defects. The application of BMAC was performed in the presence of osteonecrosis via a local injection as part of a core decompression (n=72) or by the local adsorption of intra-operative cellular bone substitution material (scaffold) incubated with BMAC during osteosynthesis (n=17) or in further surgery (n=12). After an average of 14 months (2-24 months), the patients were re-examined clinically and radiologically and interviewed. Further surgery was necessary in 2 patients within the follow-up period. These were due to a progression of a collapsed head of the femur with initial necrosis in ARCO Stage III, as well as inadequate new bone formation with secondary loss of correction after periprosthetic femoral fracture. The latter healed after repeated osteosynthesis plus BMAC application without any consequences. Other than these 2 patients, no further complications were observed. In particular, no infections, no excessive new bone formation, no induction of tumor formation, as well as no morbidity due to the bone marrow aspiration from the iliac crest were seen. There were no specific complications within the short follow-up period and a simple intra-operative use of the system for different forms of bone loss could be demonstrated. In the authors’ opinion, the on-site preparation of the bone marrow cells within the operating theater eliminates the specific risk of ex vivo cell proliferation and has a safety advantage in the use of autologous cell therapy for bone regeneration. Additional studies should be completed to determine efficacy.


Author(s):  
Xin Zhang ◽  
Miao Li ◽  
Layla El Moussawi ◽  
Sally Saab ◽  
Shasha Zhang ◽  
...  

Humoral immune responses in animals are often tightly controlled by regulated proteolysis. This proteolysis is exerted by extracellular protease cascades, whose activation culminates in the proteolytic cleavage of key immune proteins and enzymes. A model for such immune system regulation is the melanization reaction in insects, where the activation of prophenoxidase (proPO) leads to the rapid formation of eumelanin on the surface of foreign entities such as parasites, bacteria and fungi. ProPO activation is tightly regulated by a network of so-called clip domain serine proteases, their proteolytically inactive homologs, and their serpin inhibitors. In Anopheles gambiae, the major malaria vector in sub-Saharan Africa, manipulation of this protease network affects resistance to a wide range of microorganisms, as well as host survival. However, thus far, our understanding of the molecular make-up and regulation of the protease network in mosquitoes is limited. Here, we report the function of the clip domain serine protease CLIPB10 in this network, using a combination of genetic and biochemical assays. CLIPB10 knockdown partially reversed melanotic tumor formation induced by Serpin 2 silencing in the absence of infection. CLIPB10 was also partially required for the melanization of ookinete stages of the rodent malaria parasite Plasmodium berghei in a refractory mosquito genetic background. Recombinant serpin 2 protein, a key inhibitor of the proPO activation cascade in An. gambiae, formed a SDS-stable protein complex with activated recombinant CLIPB10, and efficiently inhibited CLIPB10 activity in vitro at a stoichiometry of 1.89:1. Recombinant activated CLIPB10 increased PO activity in Manduca sexta hemolymph ex vivo, and directly activated purified M. sexta proPO in vitro. Taken together, these data identify CLIPB10 as the second protease with prophenoloxidase-activating function in An. gambiae, in addition to the previously described CLIPB9, suggesting functional redundancy in the protease network that controls melanization. In addition, our data suggest that tissue melanization and humoral melanization of parasites are at least partially mediated by the same proteases.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Kilian Trillet ◽  
Kathryn A. Jacobs ◽  
Gwennan André-Grégoire ◽  
An Thys ◽  
Clément Maghe ◽  
...  

Glioblastoma is one of the most lethal forms of adult cancer, with a median survival of ∼15 mo. Targeting glioblastoma stem-like cells (GSCs) at the origin of tumor formation and relapse may prove beneficial. In situ, GSCs are nested within the vascular bed in tight interaction with brain endothelial cells, which positively control their expansion. Because GSCs are notably addicted to apelin (APLN), sourced from the surrounding endothelial stroma, the APLN/APLNR nexus has emerged as a druggable network. However, how this signaling axis operates in gliomagenesis remains underestimated. Here, we find that the glycoprotein GP130 interacts with APLNR at the plasma membrane of GSCs and arbitrates its availability at the surface via ELMOD1, which may further impact on ARF-mediated endovesicular trafficking. From a functional standpoint, interfering with GP130 thwarts APLNR-mediated self-renewal of GSCs ex vivo. Thus, GP130 emerges as an unexpected cicerone to the G protein–coupled APLN receptor, opening new therapeutic perspectives toward the targeting of cancer stem cells.


2019 ◽  
Vol 14 (2) ◽  
pp. 59-69
Author(s):  
A. S. Polyakov ◽  
Ya. A. Noskov ◽  
Yu. V. Nikitin ◽  
V. V. Tyrenko ◽  
S. N. Kolubaeva ◽  
...  

Despite continuous attempts to improve therapy, the outcomes of acute myeloid leukemia remain almost unchanged over last decades. Drugs made with a more complete understanding of the biology of acute myeloid leukemia do not equal the hopes for better prognosis. The best results are achieved only with high-dose chemotherapy, which is only possible for a limited number of patients. High phenotypic and genotypic heterogeneity of acute myeloid leukemia defines the relevance to develop personalized approaches to therapy, including those based on determination of individual drug sensitivity of blast cells.This article presents the results of developing an ex-vivo model of acute myeloid leukemia, as well as testing of two in vitro sensitivity assessment methods: evaluation of the genotoxicity of drugs in the micronucleus test and vitality and sensitivity to chemotherapy in sorted blast cells. Prospects of individualized therapy of acute myeloid leukemia were determined based on introduction into clinical practice and continuing the research.


Author(s):  
Haroon Iqbal ◽  
Farid Menaa ◽  
Naveed Ullah Khan ◽  
Anam Razzaq ◽  
Zaheer Ullah Khan ◽  
...  

: Natural bioactive compounds with anti-carcinogenic activity are gaining tremendous interest in the field of oncology. Cinnamon, an aromatic condiment commonly used in tropical regions, appeared incredibly promising as adjuvant for cancer therapy. Indeed, its whole or active parts (e.g., bark, leaf) exhibited significant anti-carcinogenic activity, which is mainly due to two cinnamaldehyde derivatives, namely 2-hydroxycinnaldehyde (HCA) and 2-benzoyloxycinnamaldehyde (BCA). In addition to their anti-cancer activity, HCA and BCA exert immunomodulatory, anti-platelets, and anti-inflammatory activities. Highly reactive α,ß-unsaturated carbonyl pharmacophore, called Michael acceptor, contribute to their therapeutic effects. The molecular mechanisms, underlying their anti-tumoral and anti-metastatic effects are miscellaneous, strongly suggesting that these compounds are multi-targeting compounds. Nevertheless, unravelling the exact molecular mechanisms of HCA and BCA remain a challenging matter which is necessary for optimal controlled-drug targeting delivery, safety, and efficiency. Eventually, their poor pharmacological properties (e.g., systemic bioavailability and solubility) represent a limitation, and depend both on their administration route (e.g., per os, intravenously) and the nature of the formulation (e.g., free, smart nano-). This concise review focused on the potential of HCA and BCA as adjuvants in Cancer. We described their medicinal effects as well as provide an update about their molecular mechanisms reported either in-vitro, ex-vivo, or in animal models.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2844-2844
Author(s):  
Kerstin Maria Kampa ◽  
Jared Acoba ◽  
Dexi Chen ◽  
Hun-Joo Lee ◽  
Kelly Beemer ◽  
...  

Abstract Introduction: p53 is an important tumor suppressor, and loss of p53 pathway function is a common event in human cancer. ASPP2 is a damage-inducible p53 binding protein that enhances apoptosis, at least in part, by selective stimulation of p53 pro-apoptotic target genes. Low ASPP2 expression occurs in many human tumors and as we have previously demonstrated, correlates with poor clinical outcome in patients with B-cell lymphomas. However, the mechanisms by which ASPP2 suppresses tumor formation remain unknown. Methods: To rigorously study ASPP2 in vivo function, we targeted the ASPP2 allele in a mouse model by homologous recombination by replacing exons 10–17 with a neoR gene. Aging mice were followed for spontaneous tumor formation. Additionally, six week old mice were irradiated at different doses and followed for tumor development. To explore the functional consequences of low ASPP2 expression, ASPP2+/− and ASPP2+/+ thymocytes were subjected ex vivo to 5Gy ionizing irradiation and apoptosis was assessed by Annexin-V/PI staining and flow cytometry. We also irradiated ASPP2+/+ and ASPP2+/−MEFs (mouse embryonic fibroblasts) with 5Gy and performed cell cycle analysis. Furthermore, we conducted global gene expression profiling between the unirradiated and irradiated ASPP2+/+ and ASPP2+/−MEFs using an Affymetrix GeneChip® Mouse Gene 1.0 ST Array. Moreover, phosphoproteomic analysis was performed on unirradiated and irradiated ASPP2+/+ and ASPP2+/−MEFs using 2-dimensional gel electrophoresis, fluorescent phosphoprotein dye Pro-Q Diamond staining, and liquid chromatography tandem mass spectroscopy. Results: We were unable to generate ASPP2−/− mice due to an early embryonic lethal defect. However, ASPP2+/− mice appear developmentally normal and reproduce. We observed an increased formation of spontaneous tumors in aging ASPP2+/− mice compared to ASPP2 +/+ mice (43% vs. 22%, at 115 weeks, p=0.011). Additionally we were able to show that after ionizing radiation, ASPP2+/− mice develop high-grade lymphomas in a dose-dependent manner at a significantly higher incidence at 50 weeks compared to ASPP2+/+ mice (p = 0.024 and p = 0.045, 6 Gy and 10.5 Gy respectively). Immunophenotyping demonstrated that these were high-grade T-cell lymphomas of thymic origin. Since ASPP2 is damage-inducible and promotes apoptosis, we wished to determine the extent to which reduction in ASPP2 expression attenuated the cellular damage response. We therefore gamma-irradiated ex vivo ASPP2+/+ and ASPP2+/−thymocytes in short-term culture and found a two-fold reduction in apoptosis in ASPP2+/− thymocytes compared to ASPP2+/+ thymocytes. Additionally, after 5 Gy gamma-irradiation, ASPP2+/− MEFs exhibited an attenuated G0/G1 checkpoint compared to ASPP2+/+ MEFs. Preliminary analysis of global gene expression in ASPP2+/+ and ASPP2+/− MEFs shows specific differences in gene expression patterns after damage. Likewise, preliminary analysis of phosphoproteomics between ASPP2+/+ and ASPP2+/− MEFs after damage, demonstrate differences in the phosphophorylation status of 170 proteins. Conclusions: ASPP2 is a haploinsufficient tumor suppressor, and reduction in ASPP2 expression attenuates both cell cycle checkpoints and apoptosis-induction after damage. These results suggest that reduction of ASPP2 levels modulate the cellular damage response, possibly at transcriptional as well as post-transcriptional levels, and provide a functional explanation for the increased tumor incidence in ASPP2+/− mice---since attenuated damage-response thresholds would lead to an impaired ability to eliminate cells that have accumulated tumorigenic mutations. Our study provides important insights into the p53-ASPP2 axis, and opens new avenues for investigation into its role in tumorigenesis and response to therapy.


1981 ◽  
Vol 67 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Silvio Parodi ◽  
Maurizio Taningher ◽  
Mauro Pala ◽  
Leonardo Santi

Using the in vivo DNA damage alkaline elution assay, a satisfactory correlation with carcinogenicity in the same target organ has been previously shown for a variety of chemical agents. This work was intended to enlarge the exploration of the predictivity of this test. Benzo[a]pyrene (BP) was found negative for damage to liver DNA of mice and rats, and 7,12-dimethylbenz[a]anthracene (DMBA) negative for damage to liver and bone marrow DNA of mice and slightly positive for damage to mammary gland DNA of young female rats. The results were found to be correlated with the extension of DNA arylation in target organs in similar experimental conditions. From carcinogenicity data reported in the Survey of Compounds Which Have Been Tested for Carcinogenic Activity (vols. 1961-1973) BP and DMBA were both found to be essentially negative as liver carcinogens; however, DMBA was a potent carcinogen in inducing mammary tumors.


Sign in / Sign up

Export Citation Format

Share Document