Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01

2011 ◽  
Vol 90 (4) ◽  
pp. 1471-1483 ◽  
Author(s):  
Shaohua Chen ◽  
Kaiping Lai ◽  
Yanan Li ◽  
Meiying Hu ◽  
Yanbo Zhang ◽  
...  
1983 ◽  
Vol 49 (01) ◽  
pp. 058-060 ◽  
Author(s):  
J M Ritter ◽  
M-A Ongari ◽  
M A Orchard ◽  
P J Lewis

SummaryFresh aortic rings incubated in serum produce more 6-oxo-PGF1α, the stable hydrolysis product of prostacyclin, than in plasma or buffer. A method is described of recovering this stimulatory activity from a dialysate of serum, showing that the activity is due to a prostacyclin stimulating factor. This factor is formed during coagulation initiated by the intrinsic pathway but not by the extrinsic pathway or by thrombin. By contrast with a previously described plasma factor, the activity of the prostacy-clinstimulating factor in serum is not greater in serum from patients with renal failure than from healthy controls. The stimulating factor is antagonised by heparin, but differs in other ways from previously described platelet derived stimulating factor(s).


Author(s):  
Hadis Khodadad ◽  
Farhad Hatamjafari ◽  
Khalil Pourshamsian ◽  
Babak Sadeghi

Aim and Objective: Microwave-assisted condensation of acetophenone 1 and aromatic aldehydes 2 gave chalcone analogs 3, which were cyclized to pyrazole derivatives 6a-f via the reaction with hydrazine hydrate and oxalic acid in the presence of the catalytic amount of acetic acid in ethanol. Materials and Methods: The structural features of the synthesized compounds were characterized by melting point, FT-IR, 1H, 13C NMR and elemental analysis. Results: The antibacterial activities of the synthesized pyrazoles was evaluated against three gram-positive bacteria such as Enterococcus durans, Staphylococcus aureus, Bacillus subtilis and two gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. Conclusion: All the synthesized pyrazoles showed relatively high antibacterial activity against S. aureus strain and none of them demonstrated antibacterial activity against E. coli.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1503
Author(s):  
Carla Guijarro-Real ◽  
Mariola Plazas ◽  
Adrián Rodríguez-Burruezo ◽  
Jaime Prohens ◽  
Ana Fita

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL−1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL−1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL−1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.


Author(s):  
Hui Shi ◽  
Jiaqin Tang ◽  
Cuiying An ◽  
Lingkang Yang ◽  
Xianxuan Zhou

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Michał Michalik ◽  
Maja Kosecka-Strojek ◽  
Mariola Wolska ◽  
Alfred Samet ◽  
Adrianna Podbielska-Kubera ◽  
...  

Linezolid is currently used to treat infections caused by multidrug-resistant Gram-positive cocci. Both linezolid-resistant S. aureus (LRSA) and coagulase-negative staphylococci (CoNS) strains have been collected worldwide. Two isolates carrying linezolid resistance genes were recovered from laryngological patients and characterized by determining their antimicrobial resistance patterns and using molecular methods such as spa typing, MLST, SCCmec typing, detection of virulence genes and ica operon expression, and analysis of antimicrobial resistance determinants. Both isolates were multidrug resistant, including resistance to methicillin. The S. aureus strain was identified as ST-398/t4474/SCCmec IVe, harboring adhesin, hemolysin genes, and the ica operon. The S. haemolyticus strain was identified as ST-42/mecA-positive and harbored hemolysin genes. Linezolid resistance in S. aureus strain was associated with the mutations in the ribosomal proteins L3 and L4, and in S. haemolyticus, resistance was associated with the presence of cfr gene. Moreover, S. aureus strain harbored optrA and poxtA genes. We identified the first case of staphylococci carrying linezolid resistance genes from patients with chronic sinusitis in Poland. Since both S. aureus and CoNS are the most common etiological factors in laryngological infections, monitoring of such infections combined with surveillance and infection prevention programs is important to decrease the number of linezolid-resistant staphylococcal strains.


Molbank ◽  
10.3390/m1229 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1229
Author(s):  
Timofey N. Chmovzh ◽  
Oleg A. Rakitin

New heterocyclic systems containing 1,2,5-chalcogenadiazoles are of great interest for the creation of organic photovoltaic materials and biologically active compounds. In this communication, 3,6-dibromopyridazine-4,5-diamine was investigated in reaction with selenium dioxide in order to obtain 4,7-dibromo-[1,2,5]selenadiazolo[3,4-d]pyridazine. We found that 7-bromo-[1,2,5]selenadiazolo[3,4-d]pyridazin-4(5H)-one, the first representative of the new heterocyclic system, was isolated as a hydrolysis product of the corresponding 4,7-dibromoderivative. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H, 13C NMR, IR and UV spectroscopy, and mass spectrometry.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 645
Author(s):  
Mohamed Ibrahem Elhawy ◽  
Sylvaine Huc-Brandt ◽  
Linda Pätzold ◽  
Laila Gannoun-Zaki ◽  
Ahmed Mohamed Mostafa Abdrabou ◽  
...  

Staphylococcus aureus continues to be a public health threat, especially in hospital settings. Studies aimed at deciphering the molecular and cellular mechanisms that underlie pathogenesis, host adaptation, and virulence are required to develop effective treatment strategies. Numerous host-pathogen interactions were found to be dependent on phosphatases-mediated regulation. This study focused on the analysis of the role of the low-molecular weight phosphatase PtpB, in particular, during infection. Deletion of ptpB in S. aureus strain SA564 significantly reduced the capacity of the mutant to withstand intracellular killing by THP-1 macrophages. When injected into normoglycemic C57BL/6 mice, the SA564 ΔptpB mutant displayed markedly reduced bacterial loads in liver and kidney tissues in a murine S. aureus abscess model when compared to the wild type. We also observed that PtpB phosphatase-activity was sensitive to oxidative stress. Our quantitative transcript analyses revealed that PtpB affects the transcription of various genes involved in oxidative stress adaptation and infectivity. Thus, this study disclosed first insights into the physiological role of PtpB during host interaction allowing us to link phosphatase-dependent regulation to oxidative bacterial stress adaptation during infection.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2248
Author(s):  
Lukáš Petera ◽  
Klaudia Mrazikova ◽  
Lukas Nejdl ◽  
Kristyna Zemankova ◽  
Marketa Vaculovicova ◽  
...  

Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S622-S623
Author(s):  
Alisa W Serio ◽  
S Ken Tanaka ◽  
Kelly Wright ◽  
Lynne Garrity-Ryan

Abstract Background In animal models of Staphylococcus aureus infection, α-hemolysin has been shown to be a key virulence factor. Treatment of S. aureus with subinhibitory levels of protein synthesis inhibitors can decrease α-hemolysin expression. Omadacycline, a novel aminomethylcycline antibiotic in the tetracycline class of bacterial protein biosynthesis inhibitors, is approved in the United States for treatment of community-acquired bacterial pneumonia (CABP) and acute bacterial skin and skin structure infections (ABSSSI) in adults. This study was performed to determine the durability of inhibition and effect of subinhibitory concentrations of omadacycline on S. aureus hemolytic activity. Methods All experiments used the methicillin-sensitive S. aureus strain Wood 46 (ATCC 10832), a laboratory strain known to secrete high levels of α-hemolysin. Minimum inhibitory concentrations (MICs) of omadacycline and comparator antibiotics (tetracycline, cephalothin, clindamycin, vancomycin, linezolid) were determined. Growth of S. aureus with all antibiotics was determined and the percentage of hemolysis assayed. “Washout” experiments were performed with omadacycline only. Results S. aureus cultures treated with 1/2 or 1/4 the MIC of omadacycline for 4 hours showed hemolysis units/108 CFU of 47% and 59% of vehicle-treated cultures, respectively (Fig. 1A, 1B). In washout experiments, treatment with as little as 1/4 the MIC of omadacycline for 1 hour decreased the hemolysis units/108 CFU by 60% for 4 hours following removal of the drug (Table 1). Figure 1 Table 1 Conclusion Omadacycline inhibited S. aureus hemolytic activity in vitro at subinhibitory concentrations and inhibition was maintained for ≥ 4 hours after removal of extracellular drug (Fig. 2). The suppression of virulence factors throughout the approved omadacycline dosing interval, in addition to the in vitro potency of omadacycline, may contribute to the efficacy of omadacycline for ABSSSI and CABP due to virulent S. aureus. This finding may apply to other organisms and other virulence factors that require new protein synthesis to establish disease. Figure 2 Disclosures Alisa W. Serio, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) S. Ken Tanaka, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) Kelly Wright, PharmD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) Lynne Garrity-Ryan, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder)


Sign in / Sign up

Export Citation Format

Share Document