A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression

Author(s):  
Hong-Li Li ◽  
Qian-Yu Li ◽  
Min-Jie Jin ◽  
Chao-Fan Lu ◽  
Zhao-Yang Mu ◽  
...  
2014 ◽  
Vol 307 (2) ◽  
pp. G196-G204 ◽  
Author(s):  
James L. Grijalva ◽  
Megan Huizenga ◽  
Kaly Mueller ◽  
Steven Rodriguez ◽  
Joseph Brazzo ◽  
...  

The Hippo signaling pathway has been implicated in mammalian organ size regulation and tumor suppression. Specifically, the Hippo pathway plays a critical role regulating the activity of transcriptional coactivator Yes-associated protein (YAP), which modulates a proliferative transcriptional program. Recent investigations have demonstrated that while this pathway is activated in quiescent livers, its inhibition leads to liver overgrowth and tumorigenesis. However, the role of the Hippo pathway during the natural process of liver regeneration remains unknown. Here we investigated alterations in the Hippo signaling pathway and YAP activation during liver regeneration using a 70% partial hepatectomy (PH) rat model. Our results indicate an increase in YAP activation by 1 day following PH as demonstrated by increased YAP nuclear localization and increased YAP target gene expression. Investigation of the Hippo pathway revealed a decrease in the activation of core kinases Mst1/2 by 1 day as well as Lats1/2 and its adapter protein Mob1 by 3 days following PH. Evaluation of liver-to-body weight ratios indicated that the liver reaches its near normal size by 7 days following PH, which correlated with a return to baseline YAP nuclear levels and target gene expression. Additionally, when liver size was restored, Mst1/2 kinase activation returned to levels observed in quiescent livers indicating reactivation of the Hippo signaling pathway. These findings illustrate the dynamic changes in the Hippo signaling pathway and YAP activation during liver regeneration, which stabilize when the liver-to-body weight ratio reaches homeostatic levels.


2020 ◽  
Vol 26 (5) ◽  
pp. 301-311 ◽  
Author(s):  
Susanne Elisabeth Pors ◽  
Lilja Harðardóttir ◽  
Hanna Ørnes Olesen ◽  
Malene Lundgaard Riis ◽  
Lea Bejstrup Jensen ◽  
...  

Abstract In vitro activation of resting ovarian follicles, with the use of mechanical stress and/or pharmacological compounds, is an emerging and novel approach for infertility treatment. The aim of this study was to assess the sphingolipid, sphingosine-1-phosphate (S1P), as a potential in vitro activation agent in murine and human ovarian tissues and isolated follicles. Juvenile murine ovaries and donated human ovarian tissues, from 10 women undergoing ovarian tissue cryopreservation for fertility preservation, were incubated with or without 12 μM S1P for 3 h for quantitative PCR analysis, and 12 h for xenotransplantation or culture studies. Gene expression analyses were performed for genes downstream of the Hippo signaling pathway. Murine ovaries and isolated murine and human preantral follicles showed significantly increased mRNA expression levels of Ccn2/CCN2 following S1P treatment compared to controls. This increase was shown to be specific for the Hippo signaling pathway and for the S1P2 receptor, as co-treatment with Hippo-inhibitor, verteporfin and S1PR2 antagonist, JTE-013, reduced the S1P-induced Ccn2 gene expression in murine ovaries. Histological evaluation of human cortical tissues (5 × 5 × 1 mm; n = 30; three pieces per patient) xenografted for 6 weeks and juvenile murine ovaries cultured for 4 days (n = 9) or allografted for 2 weeks (n = 48) showed no differences in the distribution of resting or growing follicles in S1P-treated ovarian tissues compared to controls. Collectively, S1P increased Ccn2/CCN2 gene expression in isolated preantral follicles and ovarian tissue from mice and human, but it did not promote follicle activation or growth in vivo. Thus, S1P does not appear to be a potent in vitro activation agent under these experimental conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Li Yuan ◽  
Mengmeng Zhou ◽  
Harpreet S. Wasan ◽  
Kai Zhang ◽  
Zhaoyi Li ◽  
...  

Colorectal cancer (CRC) is one of the most common malignant tumors affecting the digestive tract. Moreover, the invasion and metastasis of CRC are the main reason therapy is usually inefficient. Decreased intercellular adhesion and enhanced cell motility induced by epithelial-mesenchymal transition (EMT) provide the basic conditions for the invasion and metastasis of the epithelial tumor cells of CRC. The Jiedu Sangen Decoction (JSD) is a prescription that has been used for more than 50 years in the treatment of CRC in the Zhejiang Hospital of Traditional Chinese Medicine. The aim of this study was to investigate the mechanism of JSD-triggered inhibition of invasion and metastasis in colon cancer. In vitro, the EMT model of the SW480 cells was induced by using epithelial growth factor (50 ng/mL). In vivo, the murine model of liver metastasis was constructed by inoculating mice with the SW480 cells. The effects of JSD on cell migration, invasion, and proliferation were determined using the transwell assay and CCK-8 assay. Moreover, the proteins related to the EMT process and the Hippo signaling pathway in the cancerous tissues and cell lines were determined by western blotting and immunostaining. JSD could significantly inhibit the proliferation, migration, and invasion of CRC cells and reverse their EMT status (all, P < 0.05). Moreover, after intervention with JSD, the levels of E-Cadherin (E-cad) increased, whereas the expression levels of N-Cadherin (N-cad), Yes-associated protein (YAP), and the transcriptional coactivator with the PDZ-binding motif (TAZ) decreased in both the SW480 cells and the tumor tissues. In summary, JSD reversed EMT and inhibited the invasion and metastasis of CRC cells through the Hippo signaling pathway.


2019 ◽  
Vol 30 (23) ◽  
pp. 2929-2942 ◽  
Author(s):  
William B. Yee ◽  
Patrick M. Delaney ◽  
Pamela J. Vanderzalm ◽  
Srinivas Ramachandran ◽  
Richard G. Fehon

The Hippo signaling pathway regulates tissue growth and organ development in many animals, including humans. Pathway activity leads to inactivation of Yorkie (Yki), a transcriptional coactivator that drives expression of growth-promoting genes. In addition, Yki has been shown to recruit chromatin modifiers that enhance chromatin accessibility and thereby enhance Yki function. Here, we asked whether changes in chromatin accessibility that occur during DNA replication could also affect Yki function. We found that depletion of the chromatin assembly complex-1 (CAF-1) complex, a histone chaperone that is required for nucleosome assembly after DNA replication, in the wing imaginal epithelium leads to increased Hippo pathway target gene expression but does not affect expression of other genes. Yki shows greater association with target sites when CAF-1 is depleted and misregulation of target gene expression is Yki-dependent, suggesting that nucleosome assembly competes with Yki for pathway targets post-DNA replication. Consistent with this idea, increased target gene expression is DNA replication dependent and newly replicated chromatin at target sites shows marked nucleosome depletion when CAF-1 function is reduced. These observations suggest a connection between cell cycle progression and Hippo pathway target expression, providing insights into functions of the Hippo pathway in normal and abnormal tissue growth.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 22 (2) ◽  
pp. 931
Author(s):  
Jihyun Lee ◽  
Yujin Jung ◽  
Seo won Jeong ◽  
Ga Hee Jeong ◽  
Gue Tae Moon ◽  
...  

The Hippo signaling pathway plays a key role in regulating organ size and tissue homeostasis. Hippo and two of its main effectors, yes-associated protein (YAP) and WWTR1 (WW domain-containing transcription regulator 1, commonly listed as TAZ), play critical roles in angiogenesis. This study investigated the role of the Hippo signaling pathway in the pathogenesis of rosacea. We performed immunohistochemical analyses to compare the expression levels of YAP and TAZ between rosacea skin and normal skin in humans. Furthermore, we used a rosacea-like BALB/c mouse model induced by LL-37 injections to determine the roles of YAP and TAZ in rosacea in vivo. We found that the expression levels of YAP and TAZ were upregulated in patients with rosacea. In the rosacea-like mouse model, we observed that the clinical features of rosacea, including telangiectasia and erythema, improved after the injection of a YAP/TAZ inhibitor. Additionally, treatment with a YAP/TAZ inhibitor reduced the expression levels of YAP and TAZ and diminished vascular endothelial growth factor (VEGF) immunoreactivity in the rosacea-like mouse model. Our findings suggest that YAP/TAZ inhibitors can attenuate angiogenesis associated with the pathogenesis of rosacea and that both YAP and TAZ are potential therapeutic targets for patients with rosacea.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


Sign in / Sign up

Export Citation Format

Share Document