scholarly journals Activation of whole body by high levels of polyamine intake in rats

Amino Acids ◽  
2021 ◽  
Author(s):  
Takumi Teratani ◽  
Naoya Kasahara ◽  
Tetsuo Ijichi ◽  
Yasuhiro Fujimoto ◽  
Yasunaru Sakuma ◽  
...  

AbstractPolyamines are important to the survival and activation of organs and tissues via a homeostatic cell-metabolic process, and the polyamine content in cytoplasm decreases with aging. Decreases in cellular polyamine have been known to augment mutagenesis and cell death. Thus, supplementary polyamine in food is important to the prevention of aging. Here we show the anti-aging effects of oral intake of polyamine using luciferase-transgenic rats. Healthy rats, 10–12 weeks old, were given foods containing 0.01% and 0.1% (w/w) of polyamine, as compared a control food without polyamine, for 4 weeks. Using a bioimaging system, the photon intensities seen in the whole bodies and livers of rats consuming 0.1% of polyamine in food were stronger than those in rats consuming 0.01% and 0% of polyamine. However, there were no differences between groups in other characteristics, such as liver damage and body weight. In conclusion, we found that polyamine intake can activate cells throughout the whole body, providing an anti-aging effect.

1973 ◽  
Vol 30 (01) ◽  
pp. 114-122
Author(s):  
C.R.M Prentice ◽  
K.M Rogers ◽  
G.P McNicol

SummaryThe pharmacological effect of a new preparation of urokinase (Leo) has been studied, both in vitro and in six patients suffering from thrombo-embolic disorders. It was a non-toxic, effective fibrinolytic agent if given in sufficient dosage. A regimen consisting of an initial dose of 7,200 ploug units per kg body weight, followed by hourly maintenance therapy with 3,600 ploug units per kg intravenously, gave satisfactory evidence of whole body fibrinolytic activity. The preparation had minor but insignificant thromboplastic activity both when assayed in the laboratory and when given to patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maryam Mazhar ◽  
Ahmad Ud Din ◽  
Hamid Ali ◽  
Guoqiang Yang ◽  
Wei Ren ◽  
...  

AbstractLife is indeed continuously going through the irreversible and inevitable process of aging. The rate of aging process depends on various factors and varies individually. These factors include various environmental stimuli including exposure to toxic chemicals, psychological stress whereas suffering with various illnesses specially the chronic diseases serve as endogenous triggers. The basic underlying mechanism for all kinds of stresses is now known to be manifested as production of excessive ROS, exhaustion of ROS neutralizing antioxidant enzymes and proteins leading to imbalance in oxidation and antioxidant processes with subsequent oxidative stress induced inflammation affecting the cells, tissues, organs and the whole body. All these factors lead to conventional cell death either through necrosis, apoptosis, or autophagy. Currently, a newly identified mechanism of iron dependent regulated cell death called ferroptosis, is of special interest for its implication in pathogenesis of various diseases such as cardiovascular disease, neurological disorders, cancers, and various other age-related disorders (ARD). In ferroptosis, the cell death occur neither by conventional apoptosis, necrosis nor by autophagy, rather dysregulated iron in the cell mediates excessive lipid peroxidation of accumulated lethal lipids. It is not surprising to assume its role in aging as previous research have identified some solid cues on the subject. In this review, we will highlight the factual evidences to support the possible role and implication of ferroptosis in aging in order to declare the need to identify and explore the interventions to prevent excessive ferroptosis leading to accelerated aging and associated liabilities of aging.


2008 ◽  
Vol 197 (2) ◽  
pp. 251-263 ◽  
Author(s):  
J D Bailey ◽  
J G Berardinelli ◽  
T E Rocke ◽  
R A Bessen

Prion diseases are fatal neurodegenerative diseases that can induce endocrinopathies. The basis of altered endocrine function in prion diseases is not well understood, and the purpose of this study was to investigate the spatiotemporal relationship between energy homeostasis and prion infection in hamsters inoculated with either the 139H strain of scrapie agent, which induces preclinical weight gain, or the HY strain of transmissible mink encephalopathy (TME), which induces clinical weight loss. Temporal changes in body weight, feed, and water intake were measured as well as both non-fasted and fasted concentrations of serum glucose, insulin, glucagon, β-ketones, and leptin. In 139H scrapie-infected hamsters, polydipsia, hyperphagia, non-fasted hyperinsulinemia with hyperglycemia, and fasted hyperleptinemia were found at preclinical stages and are consistent with an anabolic syndrome that has similarities to type II diabetes mellitus and/or metabolic syndrome X. In HY TME-infected hamsters, hypodipsia, hypersecretion of glucagon (in both non-fasted and fasted states), increased fasted β-ketones, fasted hypoglycemia, and suppressed non-fasted leptin concentrations were found while feed intake was normal. These findings suggest a severe catabolic syndrome in HY TME infection mediated by chronic increases in glucagon secretion. In both models, alterations of pancreatic endocrine function were not associated with PrPSc deposition in the pancreas. The results indicate that prominent endocrinopathy underlies alterations in body weight, pancreatic endocrine function, and intake of food. The prion-induced alterations of energy homeostasis in 139H scrapie- or HY TME-infected hamsters could occur within areas of the hypothalamus that control food satiety and/or within autonomic centers that provide neural outflow to the pancreas.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianru Pan ◽  
Huocong He ◽  
Ying Su ◽  
Guangjin Zheng ◽  
Junxin Wu ◽  
...  

GST-TAT-SOD was the fusion of superoxide dismutase (SOD), cell-permeable peptide TAT, and glutathione-S-transferase (GST). It was proved to be a potential selective radioprotector in vitro in our previous work. This study evaluated the in vivo radioprotective activity of GST-TAT-SOD against whole-body irradiation. We demonstrated that intraperitoneal injection of 0.5 ml GST-TAT-SOD (2 kU/ml) 2 h before the 6 Gy whole-body irradiation in mice almost completely prevented the splenic damage. It could significantly enhance the splenic antioxidant activity which kept the number of splenic white pulp and consequently resisted the shrinkage of the spleen. Moreover, the thymus index, hepatic antioxidant activity, and white blood cell (WBC) count of peripheral blood in irradiated mice pretreated with GST-TAT-SOD also remarkably increased. Although the treated and untreated irradiated mice showed no significant difference in the growth rate of animal body weight at 7 days postirradiation, the highest growth rate of body weight was observed in the GST-TAT-SOD-pretreated group. Furthermore, GST-TAT-SOD pretreatment increased resistance against 8 Gy whole-body irradiation and enhanced 30 d survival. The overall effect of GST-TAT-SOD seemed to be a bit more powerful than that of amifostine. In conclusion, GST-TAT-SOD would be a safe and potentially promising radioprotector.


1984 ◽  
Vol 52 (3) ◽  
pp. 545-560 ◽  
Author(s):  
R. Giugliano ◽  
D. J. Millward

1. Male weanling rats were fed on diets either adequate (55 mg/kg), or severely deficient (0.4 mg/kg) in zinc, either ad lib. or in restricted amounts in four experiments. Measurements were made of growth rates and Zn contents of muscle and several individual tissues.2. Zn-deficient rats exhibited the expected symptoms of deficiency including growth retardation, cyclic changes in food intake and body-weight.3. Zn deficiency specifically reduced whole body and muscle growth rates as indicated by the fact that (a) growth rates were lower in ad lib.-fed Zn-deficient rats compared with rats pair-fed on the control diet in two experiments, (b) Zn supplementation increased body-weights of Zn-deficient rats given a restricted amount of diet at a level at which they maintained weight if unsupplemented, (c) Zn supplementation maintained body-weights of Zn-deficient rats fed a restricted amount of diet at a level at which they lost weight if unsupplemented (d) since the ratio, muscle mass:body-weight was lower in the Zn-deficient rats than in the pair-fed control groups, the reduction in muscle mass was greater than the reduction in body-weight.4. Zn concentrations were maintained in muscle, spleen and thymus, reduced in comparison to some but not all control groups in liver, kidney, testis and intestine, and markedly reduced in plasma and bone. In plasma, Zn concentrations varied inversely with the rate of change of body-weight during the cyclic changes in body-weight.5. Calculation of the total Zn in the tissues examined showed a marked increase in muscle Zn with a similar loss from bone, indicating that Zn can be redistributed from bone to allow the growth of other tissues.6. The magnitude of the increase in muscle Zn in the severely Zn-deficient rat, together with the magnitude of the total losses of muscle tissue during the catabolic phases of the cycling, indicate that in the Zn-deficient rat Zn may be highly conserved in catabolic states.


2005 ◽  
Vol 129 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Mordechai Lorberboym ◽  
Naomi Rahimi-Levene ◽  
Helena Lipszyc ◽  
Chun K. Kim

Abstract Context.—Polycythemia describes an increased proportion of red blood cells in the peripheral blood. In absolute polycythemia, there is increased red cell mass (RCM) with normal plasma volume, in contrast with apparent polycythemia, in which there is increased or normal RCM and decreased plasma volume. In order to deliver the appropriate treatment it is necessary to differentiate between the two. Objective.—A retrospective analysis of RCM and plasma volume data are presented, with special attention to different methods of RCM interpretation. Design.—The measurements of RCM and plasma volume in 64 patients were compared with the venous and whole-body packed cell volume, and the incidence of absolute and apparent polycythemia was determined for increasing hematocrit levels. Measurements of RCM and plasma volume were performed using chromium 51–labeled red cells and iodine 125–labeled albumin, respectively. The measured RCM of each patient was expressed as a percentage of the mean expected RCM and was also defined as being within or outside the range of 2 SD of the mean. The results were also expressed in the traditional manner of mL/kg body weight. Results.—Twenty-one patients (13 women and 8 men) had absolute polycythemia. None of them had an increased plasma volume beyond 2 SD of the mean. When expressed according to the criteria of mL/kg body weight, 17 of the 21 patients had abnormally increased RCM, but 4 patients (19%) had a normal RCM value. Twenty-eight patients had apparent polycythemia. The remaining 15 patients had normal RCM and plasma volume. Conclusions.—The measurement of RCM and plasma volume is a simple and necessary procedure in the evaluation of polycythemia. In obese patients, the expression of RCM in mL/kg body weight lacks precision, considering that adipose tissue is hypovascular. The results of RCM are best described as being within or beyond 2 SD of the mean value.


Author(s):  
Loredana Santo ◽  
Denise Bellisario ◽  
Giovanni Matteo Tedde ◽  
Fabrizio Quadrini

Shape memory polymers (SMP) and composites (SMPC) may be used for many applications in Space, from self-deployable structures (such as solar sails, panels, shields, booms and antennas), to grabbing systems for Space debris removal, up to new-concept actuators for telescope mirror tuning. Experiments on the International Space Station are necessary for testing prototypes in relevant environment, above all for the absence of gravity which affects deployment of slender structures but also to evaluate the aging effects of the Space environment. In fact, several aging mechanisms are possible, from polymer cracking to cross-linking and erosion, and different behaviors are expected as well, from consolidating the temporary shape to composite degradation. Evaluating the possibility of shape recovery because of sun exposure is another interesting point. In this study, a possible experiment on the ISS is shown with the aim of evaluating the aging effect of Space on material performances. The sample structure is described as well as the testing strategy.


2016 ◽  
Vol 7 (2) ◽  
pp. 26
Author(s):  
Wanmi Nathaniel ◽  
Onyeanusi I. Barth ◽  
Nzalak J. Oliver ◽  
Aluwong Tanang

<p class="jbls-body"><span lang="EN-GB">A total of one hundred and seventy-three fertilized eggs were used for morphometry, gross and histological studies. At day 4 of incubation, the mean body weight of the helmeted guinea fowl embryo was 0.6401 ± 0.0211 g. It was at day 10 of incubation that there was an increase in the whole body weight of the embryo to be 0.8650 ± 0.676 g. The whole brain weight indicated relative increased at day 4 as compared to that of the whole body weight. Graphically, there were steady increase in the body, brain and optic lobe weights. Histologically, cells and neurones that make up the optic lobe is probably as a result of the migration of immature cells from the ventricular neuroepithelium. </span></p>


2021 ◽  
Vol 11 (9) ◽  
pp. 37-42
Author(s):  
Anna Małgorzata Łopuszyńska ◽  
Mateusz Pawlicki ◽  
Magdalena Kozioł ◽  
Aleksandra Krasa ◽  
Ewa Piekarska ◽  
...  

 Introduction: Life expectancy of human population is being constantly prolonged, hence there is a lot of research into drug that will prevent the effects of aging. There are many reports that metformin, which is a drug used in type 2 diabetes, has anti-aging effects. It belongs to the group of biguanides and has been used since the 1950s. It is a relatively safe, cheap and effective drug, which makes it a promising subject for many studies. The purpose of this review is to present the latest developments in this field. Material and methods: PubMed scientific base was searched using following keywords: metformin, aging, anti-aging, in years 2017-2021. Results: Numerous studies show that metformin has an impact on aging through the nutrient pathway, AMPK signaling pathway, and its effects on reactive oxygen species. In addition, it has an anti-cancer effect, inhibiting, among others, rectal cancer cells and p53 mutant colon cancer. Research in rodents has shown that this drug has anti-aging effects on many organs, including the CNS, ovaries, prostate, heart muscle and skin. Conclusions: Metformin, which is the most commonly used oral drug in type 2 diabetes, has many other mechanisms of action. Its anti-aging effect works on many organs in our bodies, which gives hope to find an anti-aging substance. However, multicentre, randomized trials are needed to determine the exact anti-aging dose, its possible side effects, and effects on various organisms. 


Author(s):  
М.Ю. Копаева ◽  
И.Б. Алчинова ◽  
М.В. Нестеренко ◽  
А.Б. Черепов ◽  
И.Ю. Зарайская ◽  
...  

Целью настоящей работы стало исследование эффектов лактоферрина (Лф) человека у мышей после острого гамма-облучения в сублетальной дозе. Методы. Исследование было проведено на 2-2,5-месячных самцах мышей линии C57Bl/6. Животные из экспериментальных групп были подвергнуты общему воздействию гамма-излучения в дозе 7,5 Гр. Сразу после облучения и повторно через 24 часа после него часть животных получила инъекцию Лф (внутрибрюшинно, 4 мг на животное). Было изучено влияние Лф на выживаемость и среднюю продолжительность жизни мышей. Для оценки общей двигательной и исследовательской активности использовали тест «Открытое поле». Результаты. Введение Лф позволило увеличить выживаемость и среднюю продолжительность жизни облученных мышей в течение эксперимента. Происходила более быстрая нормализация динамики изменения массы тела. Кроме того, Лф оказал компенсаторное действие на исследовательскую активность облученных животных. The aim of this study was to investigate effects of human lactoferrin (Lf) in mice exposed to acute gamma-irradiation at a sublethal dose. Methods. C57Вl/6 2-2.5-month-old male mice were used for the experiments. Animals from experimental groups were exposed to whole-body gamma-radiation at a dose of 7.5 Gy. Some animals received an intraperitoneal injection of Lf (4 mg per animal) immediately and then at 24 hours after the irradiation. The effect of Lf on survival rate and life span was studied. The open field test was used to assess locomotor and research activity. Results. The Lf administration increased the survival rate and life span of irradiated mice during the experiment. The dynamics of body weight normalized faster. In addition, Lf exerted a compensatory effect on the research activity of irradiated animals.


Sign in / Sign up

Export Citation Format

Share Document