scholarly journals Prominent pancreatic endocrinopathy and altered control of food intake disrupt energy homeostasis in prion diseases

2008 ◽  
Vol 197 (2) ◽  
pp. 251-263 ◽  
Author(s):  
J D Bailey ◽  
J G Berardinelli ◽  
T E Rocke ◽  
R A Bessen

Prion diseases are fatal neurodegenerative diseases that can induce endocrinopathies. The basis of altered endocrine function in prion diseases is not well understood, and the purpose of this study was to investigate the spatiotemporal relationship between energy homeostasis and prion infection in hamsters inoculated with either the 139H strain of scrapie agent, which induces preclinical weight gain, or the HY strain of transmissible mink encephalopathy (TME), which induces clinical weight loss. Temporal changes in body weight, feed, and water intake were measured as well as both non-fasted and fasted concentrations of serum glucose, insulin, glucagon, β-ketones, and leptin. In 139H scrapie-infected hamsters, polydipsia, hyperphagia, non-fasted hyperinsulinemia with hyperglycemia, and fasted hyperleptinemia were found at preclinical stages and are consistent with an anabolic syndrome that has similarities to type II diabetes mellitus and/or metabolic syndrome X. In HY TME-infected hamsters, hypodipsia, hypersecretion of glucagon (in both non-fasted and fasted states), increased fasted β-ketones, fasted hypoglycemia, and suppressed non-fasted leptin concentrations were found while feed intake was normal. These findings suggest a severe catabolic syndrome in HY TME infection mediated by chronic increases in glucagon secretion. In both models, alterations of pancreatic endocrine function were not associated with PrPSc deposition in the pancreas. The results indicate that prominent endocrinopathy underlies alterations in body weight, pancreatic endocrine function, and intake of food. The prion-induced alterations of energy homeostasis in 139H scrapie- or HY TME-infected hamsters could occur within areas of the hypothalamus that control food satiety and/or within autonomic centers that provide neural outflow to the pancreas.

1977 ◽  
Vol 232 (2) ◽  
pp. E197 ◽  
Author(s):  
M Schebalin ◽  
S I Said ◽  
G M Makhlouf

In vivo, vasoactive intestinal peptide (VIP) produces simultaneous increases in blood glucose and insulin levels. In order to determine whether VIP, like its homologues, also stimulates insulin secretion directly, studies were made in controlled glucose media employing the vascularly perfused cat pancreas. VIP stimulated insulin secretion significantly in the presence of constant physiological concentrations of glucose. The highest insulin response to VIP (100.3+/-8.1 muU/min) approached the highest insulin response to glucose (119.9 +/- 12.0 muU/min). In the absence of glucose, the insulin response to VIP was insignificant. Unexpectedly, VIP was found to be a more effective stimulant of glucagon than of insulin secretion. The highest glucagon response to VIP (327+/-51% of control levels) was attained in the presence of physiological concentrations of glucose and equalled the glucagon response obtained upon withdrawal of glucose from the perfusate. The glucagon response to VIP was blocked by increasing the glucose in the perfusate. These studies indicate the VIP present in pancreatic islets might play a role in the local control of pancreatic endocrine function.


2019 ◽  
Vol 18 (7) ◽  
pp. 516-522
Author(s):  
Néstor F. Díaz ◽  
Héctor Flores-Herrera ◽  
Guadalupe García-López ◽  
Anayansi Molina-Hernández

The brain histaminergic system plays a pivotal role in energy homeostasis, through H1- receptor activation, it increases the hypothalamic release of histamine that decreases food intake and reduces body weight. One way to increase the release of hypothalamic histamine is through the use of antagonist/inverse agonist for the H3-receptor. Histamine H3-receptors are auto-receptors and heteroreceptors located on the presynaptic membranes and cell soma of neurons, where they negatively regulate the synthesis and release of histamine and other neurotransmitters in the central nervous system. Although several compounds acting as H3-receptor antagonist/inverse agonists have been developed, conflicting results have been reported and only one has been tested as anti-obesity in humans. Animal studies revealed the opposite effect in food intake, energy expeditor, and body weight, depending on the drug, spice, and route of administration, among others. The present review will explore the state of art on the effects of H3-receptor ligands on appetite and body-weight, going through the following: a brief overview of the circuit involved in the control of food intake and energy homeostasis, the participation of the histaminergic system in food intake and body weight, and the H3-receptor as a potential therapeutic target for obesity.


2016 ◽  
Vol 5 (06) ◽  
pp. 4641 ◽  
Author(s):  
Adel Abdel Moneim* ◽  
Sanaa M. Abd El-Twab ◽  
Mohamed B. Ashour ◽  
Ahmed I. Yousef

The goal of diabetes treatment is primarily to save life and alleviate symptoms and secondary to prevent long-term diabetic complications resulting from hyperglycemia. Thus, our present investigation was designed to evaluate the hepato-renal protective effects of gallic acid and p-coumaric acid in nicotinamide/streptozotocin (NA/STZ)-induced diabetic rats. Experimental type 2 diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (65 mg/kg b.wt.), after 15 min of i.p. injection of NA (120 mg/kg b.wt.). Gallic acid and p-coumaric acid were orally administered to diabetic rats at a dose of 20, 40 mg/kg b.wt./day, respectively, for 6 weeks. Body weight, serum glucose, protein profile, liver function enzymes and kidney function indicators was assayed. Treatment with either gallic acid or p-coumaric acid significantly ameliorated the elevated levels of glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and uric acid. Both compounds were also found to restore total protein, albumin, and globulin as well as body weight of diabetic rats to near normal values. It can conclude that both gallic acid and p-coumaric acid have potent hypoglycemic and hepato-renal protective effects in diabetic rats. Therefore, our results suggest promising hypoglycemic agents that can attenuate the progression of diabetic hepatopathy and nephropathy.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1839
Author(s):  
Mona Farhadipour ◽  
Inge Depoortere

The global burden of obesity and the challenges of prevention prompted researchers to investigate the mechanisms that control food intake. Food ingestion triggers several physiological responses in the digestive system, including the release of gastrointestinal hormones from enteroendocrine cells that are involved in appetite signalling. Disturbed regulation of gut hormone release may affect energy homeostasis and contribute to obesity. In this review, we summarize the changes that occur in the gut hormone balance during the pre- and postprandial state in obesity and the alterations in the diurnal dynamics of their plasma levels. We further discuss how obesity may affect nutrient sensors on enteroendocrine cells that sense the luminal content and provoke alterations in their secretory profile. Gastric bypass surgery elicits one of the most favorable metabolic outcomes in obese patients. We summarize the effect of different strategies to induce weight loss on gut enteroendocrine function. Although the mechanisms underlying obesity are not fully understood, restoring the gut hormone balance in obesity by targeting nutrient sensors or by combination therapy with gut peptide mimetics represents a novel strategy to ameliorate obesity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lesley Cheng ◽  
Camelia Quek ◽  
Xia Li ◽  
Shayne A. Bellingham ◽  
Laura J. Ellett ◽  
...  

AbstractPrion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


1981 ◽  
Vol 15 (4) ◽  
pp. 237-241 ◽  
Author(s):  
Franco Meschi ◽  
Berardo di Natale ◽  
Gian Filippo Rondanini ◽  
Cornelio Uderzo ◽  
Momcilo Jankovic ◽  
...  

2002 ◽  
Vol 22 (14) ◽  
pp. 5027-5035 ◽  
Author(s):  
Su Qian ◽  
Howard Chen ◽  
Drew Weingarth ◽  
Myrna E. Trumbauer ◽  
Dawn E. Novi ◽  
...  

ABSTRACT Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by α-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp−/− ) mice to examine the physiological role of AgRP. Agrp−/− mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp−/− mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp−/− mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp−/− ;Npy−/− ) mice to determine whether NPY or AgRP plays a compensatory role in Agrp−/− or NPY-deficient (Npy−/− ) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp−/− ;Npy−/− mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renata R. Braga ◽  
Barbara M. Crisol ◽  
Rafael S. Brícola ◽  
Marcella R. Sant’ana ◽  
Susana C. B. R. Nakandakari ◽  
...  

AbstractThe maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.


1985 ◽  
Vol 106 (2) ◽  
pp. 225-231 ◽  
Author(s):  
A.-M. Mendes ◽  
R. J. Madon ◽  
D. J. Flint

ABSTRACT Cortisol implants in normal and diabetic rats reduced body weight, adiposity, insulin receptor concentration and both basal and insulin-stimulated rates of lipogenesis in isolated adipocytes, whilst insulin sensitivity was unchanged. In normal but not diabetic rats these changes were accompanied by increased serum glucose and insulin concentrations. In contrast, progesterone implants in normal and diabetic rats increased body weight gain, adiposity, insulin receptor concentration and both basal and insulin-stimulated rates of lipogenesis in adipose tissue, again without affecting insulin sensitivity. Progesterone did not affect serum insulin concentrations in normal or diabetic rats but accelerated the decline in serum glucose concentrations which occurred during an overnight fast in diabetic rats. The results suggest that (1) cortisol inhibits lipogenesis in adipose tissue without affecting insulin sensitivity, (2) cortisol reduces insulin binding in adipose tissue without a requirement for hyperinsulinaemia, which might itself indirectly lead to down-regulation of the insulin receptor, and (3) in diabetic rats progesterone stimulates lipogenesis in adipose tissue without any increase in food intake or serum insulin concentrations suggesting that progesterone may have a direct anabolic role in adipose tissue. J. Endocr. (1985) 106, 225–231


Sign in / Sign up

Export Citation Format

Share Document