Segregation of late outgrowth endothelial cells into functional endothelial CD34− and progenitor-like CD34+ cell populations

Angiogenesis ◽  
2014 ◽  
Vol 18 (1) ◽  
pp. 47-68 ◽  
Author(s):  
Cristina Ferreras ◽  
Claire L. Cole ◽  
Katharina Urban ◽  
Gordon C. Jayson ◽  
Egle Avizienyte
2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Ana Villegas-Mendez ◽  
Patrick Strangward ◽  
Tovah N. Shaw ◽  
Ivana Rajkovic ◽  
Vinko Tosevski ◽  
...  

ABSTRACT Experimental cerebral malaria (ECM) is a gamma interferon (IFN-γ)-dependent syndrome. However, whether IFN-γ promotes ECM through direct and synergistic targeting of multiple cell populations or by acting primarily on a specific responsive cell type is currently unknown. Here, using a panel of cell- and compartment-specific IFN-γ receptor 2 (IFN-γR2)-deficient mice, we show that IFN-γ causes ECM by signaling within both the hematopoietic and nonhematopoietic compartments. Mechanistically, hematopoietic and nonhematopoietic compartment-specific IFN-γR signaling exerts additive effects in orchestrating intracerebral inflammation, leading to the development of ECM. Surprisingly, mice with specific deletion of IFN-γR2 expression on myeloid cells, T cells, or neurons were completely susceptible to terminal ECM. Utilizing a reductionist in vitro system, we show that synergistic IFN-γ and tumor necrosis factor (TNF) stimulation promotes strong activation of brain blood vessel endothelial cells. Combined, our data show that within the hematopoietic compartment, IFN-γ causes ECM by acting redundantly or by targeting non-T cell or non-myeloid cell populations. Within the nonhematopoietic compartment, brain endothelial cells, but not neurons, may be the major target of IFN-γ leading to ECM development. Collectively, our data provide information on how IFN-γ mediates the development of cerebral pathology during malaria infection.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Naosuke Kamei ◽  
Kivanc Atesok ◽  
Mitsuo Ochi

Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+) cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.


2020 ◽  
Author(s):  
Emmi Helle ◽  
Minna Ampuja ◽  
Alexandra Dainis ◽  
Laura Antola ◽  
Elina Temmes ◽  
...  

AbstractRationaleCell-cell interactions are crucial for the development and function of the organs. Endothelial cells act as essential regulators of tissue growth and regeneration. In the heart, endothelial cells engage in delicate bidirectional communication with cardiomyocytes. The mechanisms and mediators of this crosstalk are still poorly known. Furthermore, endothelial cells in vivo are exposed to blood flow and their phenotype is greatly affected by shear stress.ObjectiveWe aimed to elucidate how cardiomyocytes regulate the development of organotypic phenotype in endothelial cells. In addition, the effects of flow-induced shear stress on endothelial cell phenotype were studied.Methods and resultsHuman induced pluripotent stem cell (hiPSC) -derived cardiomyocytes and endothelial cells were grown either as a monoculture or as a coculture. hiPS-endothelial cells were exposed to flow using the Ibidi-pump system. Single-cell RNA sequencing was performed to define cell populations and to uncover the effects on their transcriptomic phenotypes. The hiPS-cardiomyocyte differentiation resulted in two distinct populations; atrial and ventricular. Coculture had a more pronounced effect on hiPS-endothelial cells compared to hiPS-cardiomyocytes. Coculture increased hiPS-endothelial cell expression of transcripts related to vascular development and maturation, cardiac development, and the expression of cardiac endothelial cell -specific genes. Exposure to flow significantly reprogrammed the hiPS-endothelial cell transcriptome, and surprisingly, promoted the appearance of both venous and arterial clusters.ConclusionsSingle-cell RNA sequencing revealed distinct atrial and ventricular cell populations in hiPS-cardiomyocytes, and arterial and venous-like cell populations in flow exposed hiPS-endothelial cells. hiPS-endothelial cells acquired cardiac endothelial cell identity in coculture. Our study demonstrated that hiPS-cardiomoycytes and hiPS-endothelial cells readily adapt to coculture and flow in a consistent and relevant manner, indicating that the methods used represent improved physiological cell culturing conditions that potentially are more relevant in disease modelling. In addition, novel cardiomyocyte-endothelial cell crosstalk mediators were revealed.


1996 ◽  
Vol 134 (3) ◽  
pp. 783-791 ◽  
Author(s):  
S Garfinkel ◽  
X Hu ◽  
I A Prudovsky ◽  
G A McMahon ◽  
E M Kapnik ◽  
...  

Senescent cells do not proliferate in response to exogenous growth factors, yet the number and affinity of growth factor receptors on the cell surface appear to be similar to presenescent cell populations. To determine whether a defect in receptor signaling exists, we analyzed human umbilical vein endothelial cells (HUVEC) since HUVEC growth is absolutely dependent upon the presence of FGF. We report that in both presenescent and senescent HUVEC populations, FGF-1 induces the expression of cell cycle-specific genes, suggesting that functional FGF receptor (FGFR) may exist on the surface of these cells. However, the tyrosine phosphorylation of FGFR-1 substrates, Src and cortactin, is impaired in senescent HUVEC, and only the presenescent cell populations exhibit a FGF-1-dependent Src tyrosine kinase activity. Moreover, we demonstrate that senescent HUVEC are unable to migrate in response to FGF-1, and these data correlate with an altered organization of focal adhesion sites. These data suggest that the induction of gene expression is insufficient to promote a proliferative or migratory phenotype in senescent HUVEC and that the attenuation of the FGFR-1 signal transduction pathway may be involved in the inability of senescent HUVEC to proliferate and/or migrate.


1997 ◽  
Vol 273 (1) ◽  
pp. L275-L281 ◽  
Author(s):  
M. Geiger ◽  
A. Stone ◽  
S. N. Mason ◽  
K. T. Oldham ◽  
K. S. Guice

Phenotypic heterogeneity among endothelial cell populations may account for important organ-specific behaviors. Experimental evidence suggests that endothelium-derived nitric oxide mediates certain of these unique responses. The purpose of these investigations was to compare rat pulmonary microvascular endothelial cells with pulmonary artery and aortic macrovascular endothelial cells in their ability to generate nitric oxide (NO). Cultures of these microvascular and macrovascular endothelial cells were incubated with interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and Salmonella typhimurium lipopolysaccharide (LPS) alone or in combination, and nitrite production was measured. Single-agent exposure with IFN-gamma (up to 1,000 U/ml), TNF-alpha (up to 60,000 U/ml), or LPS (up to 500 ng/ml) had little effect on nitrite generation. Nitrite production by rat aortic macrovascular endothelial cells (RAEC) was significantly greater than that by the rat lung microvascular endothelial cells (RLMVEC) when stimulated with TNF-alpha + IFN-gamma, LPS + IFN-gamma, or TNF-alpha + LPS. The maximal response by all endothelial cell types (approximately 15-fold increase in RAEC and 8-fold increase in RLMVEC) was observed with LPS + IFN-gamma. The nitrite generation from rat pulmonary artery endothelial cells was intermediate between RAEC and RLMVEC responses when stimulated with IFN-gamma + LPS or TNF-alpha. Similar patterns of heterogeneous inducible nitric oxide synthase mRNA induction occurred when Northern analysis of specimens from the cultured endothelial cell types was done. These data suggest that phenotypic heterogeneity between these endothelial cell populations is substantial and, by inference, that site-specific NO. generation may occur.


1996 ◽  
Vol 134 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Armin E Heufelder ◽  
Peter C Scriba

Heufelder AE, Scriba PC. Characterization of adhesion receptors on cultured microvascular endothelial cells derived from the retroorbital connective tissue of patients with Graves' ophthalmopathy. Eur J Endocrinol 1996:134:51–60 T lymphocytes have been demonstrated recently to play an important role in the pathogenesis and propagation of Graves' ophthalmopathy (GO). Recruitment of T cells to the retroorbital tissue in GO involves the activation of certain adhesion molecules both in the vascular endothelium and in the extravascular connective tissue within the retroorbital space. To characterize the interactions between orbital endothelial cells (OECs) and circulating T cells in vitro, we designed a two-step immunopurification procedure with bead-immobilized Ulex europaeus I lectin and anti-human endothelial cell antigen (CD3I) monoclonal antibody for rapid and reproducible isolation of highly pure microvascular endothelial cell populations from small quantities of retroorbital connective tissue. Endothelial origin of the resulting cell populations was confirmed by positive immunoreactivity for von Willebrand factor. CD 3 I and thrombomodulin. Under baseline conditions, GO-OECs, but not normal OECs, expressed intercellular adhesion molecule 1 (ICAM-1) and CD44 immunoreactivity but no immunoreactivity for endothelial leukocyte adhesion molecule I (ELAM-1) and vascular cell adhesion molecule I (VCAM-1) was detected. Exposure of GO-OEC and normal OEC monolayers to interferon γ, interleukin 1 α and tumor necrosis factor α resulted in marked up-regulation of immunoreactivity for ICAM-1 and in induction of ELAM-1 and VCAM-1. Blocking experiments using monoclonal antibodies directed against various adhesion molecules demonstrated that interactions between matched activated T lymphocytes and OECs were mediated by integrin-dependent ICAM-1/leukocyte function-associated antigen 1 (LFA-1): VCAM-1/very late antigen 4 (VLA-4)) and integrin-independent (CD44) pathways, and revealed marked differences when comparing GO-OECs and normal OECs. In conclusion, the availability of OECs from affected retroorbital tissue of patients with GO provides a valuable tool for studying further the mechanisms responsible for orbit-specific lymphocyte recruitment in GO. Armin E Heufelder, Molecular Thyroid Research Unit, Medizinische Klinik, Klinikum Innenstadt, Ziemssenstrasse 1, 80336 München, Germany


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Sarah D’Alessandro ◽  
Andrea Magnavacca ◽  
Federica Perego ◽  
Marco Fumagalli ◽  
Enrico Sangiovanni ◽  
...  

Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3013-3021 ◽  
Author(s):  
J. Partanen ◽  
M.C. Puri ◽  
L. Schwartz ◽  
K.D. Fischer ◽  
A. Bernstein ◽  
...  

TIE is a receptor tyrosine kinase expressed in both mature endothelial cells and their precursors, as well as in some hematopoietic cells. Mouse embryos homozygous for a disrupted Tie allele die at midgestation due to impaired endothelial cell integrity and resulting hemorrhage. Here we have performed chimeric analysis to study further the function of the murine TIE in the development of embryonic vasculature and in the hematopoietic system. Cells lacking a functional Tie gene (tie(lcz)/tie(lczn-) cells) contributed to the embryonic vasculature at E10.5 as efficiently as cells heterozygous for a targeted Tie allele (tie(lcz)/+ cells). Thus, TIE does not play a significant role in vasculogenesis or in early angiogenic processes, such as formation of the intersomitic arteries and limb bud vascularization. At E15.5 tie(lcz)/tie(lczn-) cells still readily contributed to major blood vessels and to endothelial cells of organs such as lung and heart, which have been suggested to be vascularized by angioblast differentiation. In contrast, the tie(lcz)/tie(lczn-) cells were selected against in the capillary plexuses of several angiogenically vascularized tissues, such as brain and kidney. Our results thus support a role for TIE in late phases of angiogenesis but not vasculogenesis. Furthermore, the results suggest that different mechanisms regulate early and late angiogenesis and provide support for a model of differential organ vascularization by vasculogenic or angiogenic processes. Analysis of adult chimeras suggested that TIE is required to support the survival or proliferation of certain types of endothelial cells demonstrating heterogeneity in the growth/survival factor requirements in various endothelial cell populations. Chimeric analysis of adult hematopoietic cell populations, including peripheral platelets and bone marrow progenitor cells, revealed that tie(lcz)/tie(lczn-) cells were able to contribute to these cell types in a way indistinguishable from tie(lcz)/+ or wild-type cells. Thus, the primary function of TIE appears to be restricted to the endothelial cell lineage.


Neoplasia ◽  
2011 ◽  
Vol 13 (10) ◽  
pp. 980-990 ◽  
Author(s):  
Patrick Starlinger ◽  
Philipp Brugger ◽  
Christian Reiter ◽  
Dominic Schauer ◽  
Silvia Sommerfeldt ◽  
...  

Blood ◽  
2014 ◽  
Vol 123 (24) ◽  
pp. 3697-3705 ◽  
Author(s):  
Lesley A. Everett ◽  
Audrey C. A. Cleuren ◽  
Rami N. Khoriaty ◽  
David Ginsburg

Key Points Lman1 tissue-specific knockout mice reveal that endothelial cells, not hepatocytes, are the primary source of FVIII biosynthesis. F8 gene expression is heterogeneous among endothelial cell populations in different tissues.


Sign in / Sign up

Export Citation Format

Share Document