scholarly journals The HGR motif is the antiangiogenic determinant of vasoinhibin: implications for a therapeutic orally active oligopeptide

Angiogenesis ◽  
2021 ◽  
Author(s):  
Juan Pablo Robles ◽  
Magdalena Zamora ◽  
Lourdes Siqueiros-Marquez ◽  
Elva Adan-Castro ◽  
Gabriela Ramirez-Hernandez ◽  
...  

AbstractThe hormone prolactin acquires antiangiogenic and antivasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, an endogenous prolactin fragment of 123 or more amino acids that inhibits the action of multiple proangiogenic factors. Preclinical and clinical evidence supports the therapeutic potential of vasoinhibin against angiogenesis-related diseases including diabetic retinopathy, peripartum cardiomyopathy, rheumatoid arthritis, and cancer. However, the use of vasoinhibin in the clinic has been limited by difficulties in its production. Here, we removed this barrier to using vasoinhibin as a therapeutic agent by showing that a short linear motif of just three residues (His46-Gly47-Arg48) (HGR) is the functional determinant of vasoinhibin. The HGR motif is conserved throughout evolution, its mutation led to vasoinhibin loss of function, and oligopeptides containing this sequence inhibited angiogenesis and vasopermeability with the same potency as whole vasoinhibin. Furthermore, the oral administration of an optimized cyclic retro-inverse vasoinhibin heptapeptide containing HGR inhibited melanoma tumor growth and vascularization in mice and exhibited equal or higher antiangiogenic potency than other antiangiogenic molecules currently used as anti-cancer drugs in the clinic. Finally, by unveiling the mechanism that obscures the HGR motif in prolactin, we anticipate the development of vasoinhibin-specific antibodies to solve the on-going challenge of measuring endogenous vasoinhibin levels for diagnostic and interventional purposes, the design of vasoinhibin antagonists for managing insufficient angiogenesis, and the identification of putative therapeutic proteins containing HGR.

2018 ◽  
Vol 25 (20) ◽  
pp. 2292-2303 ◽  
Author(s):  
Negar Talaei Zanjani ◽  
Monica Miranda Saksena ◽  
Fariba Dehghani ◽  
Anthony L. Cunningham

Hemocyanins are large and versatile glycoproteins performing various immunological and biological functions in many marine invertebrates including arthropods and molluscs. This review discusses the various pharmacological applications of mollusc hemocyanin such as antiviral activity, immunostimulatory and anticancer properties that have been reported in the literature between the years 2000 and 2016. Emphasis is placed on a better mechanistic understanding of hemocyanin as a therapeutic agent. Elucidation of the mechanism of action is essential to improve the clinical efficacy and for a better understanding of some endogenous immunological functions of this complex glycoprotein.


Author(s):  
Mohamad Hossein Pourhanifeh ◽  
Kazem Abbaszadeh-Goudarzi ◽  
Mohammad Goodarzi ◽  
Sara G.M. Piccirillo ◽  
Alimohammad Shafiee ◽  
...  

: Melanoma is the most life-threatening and aggressive class of skin malignancies. The incidence of melanoma has steadily increased. Metastatic melanoma is greatly resistant to standard anti-melanomatreatments such as chemotherapy, and 5-year survival rate of cases with melanoma who have metastatic form of disease is less than 10%. The contributing role of apoptosis, angiogenesis and autophagy in the pathophysiology of melanoma has been previously demonstrated. Thus, it is extremely urgent to search for complementary therapeutic approachesthat couldenhance the quality of life of subjects and reduce treatment resistance and adverse effects. Resveratrol, known as a polyphenol component present in grapes and some plants, has anti-cancer properties due to its function as an apoptosis inducer in tumor cells, and anti-angiogenic agent to prevent metastasis. However, more clinical trials should be conducted to prove resveratrol efficacy. : Herein, for first time, we summarize current knowledge of anti-cancerous activities of resveratrol in melanoma.


Author(s):  
Vijay Kumar

: Mimosa pudica Linn is an integrated part of Traditional Medicines Systems of India, China, Africa, Korea and America. It has been used from centuries in traditional medicines to cure different diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, and dyspepsia. It is an important ingredient of wide class of herbal formulations. To assess the scientific evidence for therapeutic potential of Mimosa pudica Linn and to identify the gaps for future research. The available information on the ethno-medicinal uses, phytochemistry, pharmacology and toxicology of Mimosa pudica Linn was collected via a library and electronic searches in Sci-Finder, Pub-Med, Science Direct, Google Scholar for the period, 1990 to 2020. In traditional medicinal systems, variety of ethno-medicinal applications of Mimosa pudica Linn has been noticed. Phytochemical investigation has resulted in identification of 40 well known chemical constituents, among which alkaloids, phenols and flavionoids are the predominant groups. The crude extracts and isolates have exhibited a wide spectrum of in vitro and in vivo pharmacological activities including anti-cancer, anti-inflammation, osteoporosis, neurological disorders, hypertension etc.. To quantify the Mimosa pudica Linn and its formulations, analytical techniques like HPLC and HPTLC has shown dominancy with good range of recovery and detection limit. Mimosa pudica Linn is the well-known herb since an ancient time. The pharmacological results supported some of the applications of Mimosa pudica Linn in traditional medicine systems. Perhaps, the predominance of alkaloids, phenols and flavionoids are responsible for the pharmacological activities the crude extracts and isolates of Mimosa pudica Linn. Further, there is need to isolate and evaluate the active chemical constituents of Mimosa pudica Linn having significant medicinal values. In future, it is important to study the exact mechanism associated with the phytochemicals of Mimosa pudica Linn especially on anti-cancer activities. Notably, toxicity studies on Mimosa pudica Linn are limited which are to be explored in future for the safe application of Mimosa pudica Linn and its formulations.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Onishi ◽  
Ryouta Maeda ◽  
Michiko Terada ◽  
Sho Sato ◽  
Takahiro Fujii ◽  
...  

AbstractAccumulation of tau protein is a key pathology of age-related neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Those diseases are collectively termed tauopathies. Tau pathology is associated with axonal degeneration because tau binds to microtubules (MTs), a component of axon and regulates their stability. The acetylation state of MTs contributes to stability and histone deacetylase 6 (HDAC6) is a major regulator of MT acetylation status, suggesting that pharmacological HDAC6 inhibition could improve axonal function and may slow the progression of tauopathy. Here we characterize N-[(1R,2R)-2-{3-[5-(difluoromethyl)-1,3,4-oxadiazol-2-yl]-5-oxo-5H,6H,7H-pyrrolo[3,4-b]pyridin-6-yl}cyclohexyl]-2,2,3,3,3-pentafluoropropanamide (T-518), a novel, potent, highly selective HDAC6 inhibitor with clinically favorable pharmacodynamics. T-518 shows potent inhibitory activity against HDAC6 and superior selectivity over other HDACs compared with the known HDAC6 inhibitors in the enzyme and cellular assays. T-518 showed brain penetration in an oral dose and blocked HDAC6-dependent tubulin deacetylation at Lys40 in mouse hippocampus. A 2-week treatment restored impaired axonal transport and novel object recognition in the P301S tau Tg mouse, tauopathy model, while a 3-month treatment also decreased RIPA-insoluble tau accumulation. Pharmaceutical inhibition of HDAC6 is a potential therapeutic strategy for tauopathy, and T-518 is a particularly promising drug candidate.


2021 ◽  
Vol 10 (4) ◽  
pp. 711
Author(s):  
Byung-Chul Lee ◽  
Insung Kang ◽  
Kyung-Rok Yu

Identification of the immunomodulatory and regenerative properties of mesenchymal stem cells (MSCs) have made them an attractive alternative therapeutic option for diseases with no effective treatment options. Numerous clinical trials have followed; however, issues such as infusional toxicity and cellular rejection have been reported. To address these problems associated with cell-based therapy, MSC exosome therapy was developed and has shown promising clinical outcomes. MSC exosomes are nanosized vesicles secreted from MSCs and represent a non-cellular therapeutic agent. MSC exosomes retain therapeutic features of the cells from which they originated including genetic material, lipids, and proteins. Similar to MSCs, exosomes can induce cell differentiation, immunoregulation, angiogenesis, and tumor suppression. MSC exosomes have therefore been employed in several experimental models and clinical studies. Here, we review the therapeutic potential of MSC-derived exosomes and summarize currently ongoing clinical trials according to disease type. In addition, we propose several functional enhancement strategies for the effective clinical application of MSC exosome therapy.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Federica Biello ◽  
Francesca Platini ◽  
Francesca D’Avanzo ◽  
Carlo Cattrini ◽  
Alessia Mennitto ◽  
...  

Background: Breast cancer (BC) is the most common neoplasm in women. Many clinical and preclinical studies investigated the possible relationship between host metabolism and BC. Significant differences among BC subtypes have been reported for glucose metabolism. Insulin can promote tumorigenesis through a direct effect on epithelial tissues or indirectly by affecting the levels of other modulators, such as the insulin-like growth factor (IGF) family of receptors, sex hormones, and adipokines. The potential anti-cancer activity of metformin is based on two principal effects: first, its capacity for lowering circulating insulin levels with indirect endocrine effects that may impact on tumor cell proliferation; second, its direct influence on many pro-cancer signaling pathways that are key drivers of BC aggressiveness. Methods: In the present review, the interaction between BC, host metabolism, and patients’ prognosis has been reviewed across available literature evidence. Conclusions: Obesity, metabolic syndrome, and insulin resistance are all involved in BC growth and could have a relevant impact on prognosis. All these factors act through a pro-inflammatory state, mediated by cytokines originated in fat tissue, and seem to be related to a higher risk of BC development and worse prognosis.


2021 ◽  
Vol 22 (7) ◽  
pp. 3755
Author(s):  
Jakub Rok ◽  
Zuzanna Rzepka ◽  
Justyna Kowalska ◽  
Klaudia Banach ◽  
Artur Beberok ◽  
...  

Minocycline is a drug which induces skin hyperpigmentation. Its frequency reaches up to 50% of treated patients. The adverse effect diminishes the great therapeutic potential of minocycline, including antibacterial, neuroprotective, anti-inflammatory and anti-cancer actions. It is supposed that an elevated melanin level and drug accumulation in melanin-containing cells are related to skin hyperpigmentation. This study aimed to evaluate molecular and biochemical mechanism of minocycline-induced hyperpigmentation in human normal melanocytes, as well as the contribution of UV radiation to this side effect. The experiments involved the evaluation of cyto- and phototoxic potential of the drug using cell imaging with light and confocal microscopes as well as biochemical and molecular analysis of melanogenesis. We showed that minocycline induced melanin synthesis in epidermal melanocytes. The action was intensified by UV irradiation, especially with the UVB spectrum. Minocycline stimulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) gene. Higher levels of melanin and increased activity of tyrosinase were also observed in treated cells. Moreover, minocycline triggered the supranuclear accumulation of tyrosinase, similar to UV radiation. The decreased level of premelanosome protein PMEL17 observed in all minocycline-treated cultures suggests disorder of the formation, maturation or distribution of melanosomes. The study revealed that minocycline itself was able to enhance melanin synthesis. The action was intensified by irradiation, especially with the UVB spectrum. Demonstrated results confirmed the potential role of melanin and UV radiation minocycline-induced skin hyperpigmentation.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2147 ◽  
Author(s):  
Michele Dei Cas ◽  
Riccardo Ghidoni

The yellow pigment curcumin, extracted from turmeric, is a renowned polyphenol with a broad spectrum of health properties such as antioxidant, anti-inflammatory, anti-cancer, antidiabetic, hepatoprotective, anti-allergic, anti-dermatophyte, and neuroprotective. However, these properties are followed by a poor pharmacokinetic profile which compromises its therapeutic potential. The association of low absorption by the small intestine and the extensive reductive and conjugative metabolism in the liver dramatically weakens the oral bioavailability. Several strategies such as inhibition of curcumin metabolism with adjuvants as well as novel solid and liquid oral delivery systems have been tried to counteract curcumin poor absorption and rapid elimination from the body. Some of these drug deliveries can successfully enhance the solubility, extending the residence in plasma, improving the pharmacokinetic profile and the cellular uptake.


2019 ◽  
Vol 1 (1) ◽  
pp. 36-39
Author(s):  
Bernd Giebel ◽  
Verena Börger ◽  
Mario Gimona ◽  
Eva Rohde

Human mesenchymal stem/stromal cells (MSCs) represent a promising tool in regenerative medicine. Until now, almost one thousand NIH-registered clinical trials investigated their immunomodulatory and pro-regenerative therapeutic potential in various diseases. Despite controversial reports regarding the efficacy of MSC-treatments, MSCs appear to exert their beneficial effects in a paracrine manner rather than by cell replacement. In this context, extracellular vesicles (EVs), such as exosomes and microvesicles, seem to induce the MSCs’ therapeutic effects. Here, we briefly illustrate the potential of MSC-EVs as therapeutic agent of the future.


Sign in / Sign up

Export Citation Format

Share Document