Deformation Mechanism and Control Ttechnology of Surrounding Rock of the Roadway in a Steep Coal seam

Author(s):  
Tu Hong-sheng ◽  
Liu Song-yong ◽  
Huang Chang-wen ◽  
Guo Chen-ye ◽  
Zhang Xiao-bo ◽  
...  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fei Liu ◽  
Yongsheng Han

The deformation control of the surrounding rock during gob-side entry driving along deeply fully mechanized caving island working face is one of the main bottlenecks affecting the successful and efficient production in modern mining. The prior ordinary fully mechanized caving theories have been difficult in ensuring the safe and efficient mining along island working face during gob-side entry driving under the complex conditions in the west. Therefore, it is of great theoretical and practical significance to carry out the research on the deformation mechanism and control of the surrounding rock during gob-side entry driving along deeply fully mechanized caving island working face. This paper, by means of experimental research, theoretical analysis, numerical calculation, and field industrial test, systemically researched the deformation characteristics of the surrounding rock and the law of strata behaviors during gob-side entry driving along deeply fully mechanized caving island working face.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuliang Yang ◽  
Xiaobin Li ◽  
Pengfei Li

In order to solve the problem of safe and rapid excavation and support of roadway with large section and extra-thick top coal under complex geological conditions, the deformation mechanism and control of roadway are analyzed by means of field investigation, numerical simulation, theoretical analysis, and field practice, taking the 2203 transportation roadway of a mine in Shanxi Province as the engineering background. The results show the following: (1) the concentration of normal tensile stress in the middle of large-span roadway roof and end shear stress is significant, which may easily lead to the separation of roof and the extrusion deformation of surrounding rock; (2) the surface shear failure depth of the roadway side is large, and the insufficient length of the bolt, the small density of the protective side, and the insufficient support strength are easy to cause the bulge and splitting of the coal wall; (3) roof joints and fractures are developed, and the dirt band of different thickness occurs, so it is easy for the roof separation and the anchor solids to cut down along the weak surface of the dirt band; (4) the geological structure produces horizontal movement of surrounding rock, which easily leads to poor supporting effect of roadway roof and material deformation and failure. Finally, a safe and economic comprehensive support system of “high-strength, high-resistance, and high-prestressed anchor cable support system + high-strength support of the two sides roadway + U-shaped anchor cable combined truss” is proposed, and the control mechanism is explained and applied successfully in the field.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zengde Yin ◽  
Jinxiao Liu ◽  
Wenbin Sun ◽  
Kebao Guo ◽  
Feng Zhang

Weak impact occurs during roadway excavation in some extremely thick coal seams in China. Although this hazard is not enough to destroy the roadway, it will cause fracturing and large deformation of the roadway surrounding rock, resulting in the fracturing of bolts and anchor cables and bringing great difficulties to roadway support. In the hope of solving this problem, firstly, the reason for impact occurrence in the roadway of the extremely thick coal seam is analyzed from the perspective of energy. Then, the surrounding rock fracture evolution in such a roadway is explored by means of numerical simulation, microseism, and borehole observation. Furthermore, the “pressure relief and yielding support” joint prevention and control technology is proposed and applied to Yili No. 1 Coal Mine. The field engineering application results show that the joint prevention and control technology can effectively reduce the impact energy and ensure the stability of the roadway surrounding rock in the extremely thick coal seam. The research findings can provide a theoretical foundation for the roadway support of the same type.


2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2015 ◽  
Vol 723 ◽  
pp. 271-278
Author(s):  
Yu Liang Zhou ◽  
Dong Feng Yuan ◽  
Jun Zheng ◽  
Hua Wang

To provide a theoretical basis for water prevention and control methods and reasonable supporting techniques for vertical shaft, and to ensure the shaft construction to pass the sandstone aquifer safely and rapidly, numerical simulation using dynamic damage constitutive model, which was a user-defined constitutive modules in FLAC3D, a lagrangian analysis code in three dimensions, has been applied to investigate the dynamic damage effect in the surrounding rock of the grouting curtain near the driving working face for vertical shaft excavated by blasting. The results indicate that the distribution of the damage zone in the surrounding rock of the shaft, which decreases the effective thickness of the grouting curtain, was like a ellip-se, and that the depth of the damage zone in the surrounding rock of the shaft grouting curtain is fewer than that of the driving face floor. It can be concluded that the centre part of the driving face floor, especially the cutting hole zones, and the shaft wall in the greater horizontal stress side are the " key parts " for shaft water prevention and control methods.


2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


2012 ◽  
Vol 170-173 ◽  
pp. 20-24 ◽  
Author(s):  
Kai Cui ◽  
Xue Kai Pan

Tunnel engineering information construction has been widely used, and the back analysis is its core. As the common useful method, displacement back analysis is of special advantages. This paper introduces the calculative method based on the application in a railway tunnel. The result shows that strain softening model can be used to simulate the large deformation mechanism of surrounding rock.


Sign in / Sign up

Export Citation Format

Share Document