scholarly journals Study on Surrounding Rock Deformation Mechanism and Control of Roadway with Large Section and Extra-Thick Top Coal

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuliang Yang ◽  
Xiaobin Li ◽  
Pengfei Li

In order to solve the problem of safe and rapid excavation and support of roadway with large section and extra-thick top coal under complex geological conditions, the deformation mechanism and control of roadway are analyzed by means of field investigation, numerical simulation, theoretical analysis, and field practice, taking the 2203 transportation roadway of a mine in Shanxi Province as the engineering background. The results show the following: (1) the concentration of normal tensile stress in the middle of large-span roadway roof and end shear stress is significant, which may easily lead to the separation of roof and the extrusion deformation of surrounding rock; (2) the surface shear failure depth of the roadway side is large, and the insufficient length of the bolt, the small density of the protective side, and the insufficient support strength are easy to cause the bulge and splitting of the coal wall; (3) roof joints and fractures are developed, and the dirt band of different thickness occurs, so it is easy for the roof separation and the anchor solids to cut down along the weak surface of the dirt band; (4) the geological structure produces horizontal movement of surrounding rock, which easily leads to poor supporting effect of roadway roof and material deformation and failure. Finally, a safe and economic comprehensive support system of “high-strength, high-resistance, and high-prestressed anchor cable support system + high-strength support of the two sides roadway + U-shaped anchor cable combined truss” is proposed, and the control mechanism is explained and applied successfully in the field.

2019 ◽  
Vol 9 (18) ◽  
pp. 3891 ◽  
Author(s):  
Rui Gao ◽  
Hongchun Xia ◽  
Kun Fang ◽  
Chunwang Zhang

The roof fall hazard is more likely to take place within chamber with ultra-large section, which would not only damage mechanical equipment, but also cause casualties. In this paper, the strap joint chamber of the Tashan coal mine is studied, and finite and discrete element method (FDEM) is used to establish the numerical model of the roof fall of the chamber dome. The simulation results show that the chamber dome mainly undergoes shear failure and forms a large number of cracks. With further development and penetration of cracks, a distinct roof separation is found in the chamber dome. When the crack develops to the dome surface of the chamber, under the effect of the mine pressure, the coal body is separated from the surface of the chamber and the roof fall hazard occurs. Based on the mechanism of roof fall hazard of the chamber dome, it is concluded that improving the shear strength of the surrounding rock and reducing the crack penetration are the main ways to control the roof fall. Therefore, the high-strength anchor bolt and cable support is adopted to fill the cracks and improve the shear strength of the surrounding rock. The result showed that the roof separation of the chamber dome in the field is confined to 0.012 m. The surrounding rock is well controlled and no roof fall occurs.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoming Sun ◽  
Bo Zhang ◽  
Li Gan ◽  
Zhigang Tao ◽  
Chengwei Zhao

Muzhailing Highway Extra-long Tunnel in Lanzhou, Gansu Province, China, belongs to the soft rock tunnel in the extremely high geostress area. During the construction process, large deformation of the soft rock occurred frequently. Taking the no. 2 inclined shaft of Muzhailing tunnel as the research object, an NPR (negative Poisson’s ratio) constant resistance and large deformation anchor cable support system based on high prestress force, constant resistance, and releasing surrounding rock pressure was proposed. The characteristics of the surrounding rock under the steel arch support and NPR anchor cable support were compared and analyzed by using 3DEC software. A series of field tests were conducted in the no. 2 inclined shaft, and the rock strength, displacement of the surrounding rock, deep displacement of the surrounding rock, internal force of steel arch, and axial force of anchor cable were measured to study the application effect of the NPR anchor cable support system in tunnel engineering. Moreover, the 3DEC numerical simulation results were compared with the field test results. The research results show that the application of NPR constant resistance and large deformation anchor cable support system in tunnel engineering has achieved good results, and it plays a significant role in controlling the large deformation of the tunnel surrounding rock.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jin Zhang ◽  
Mengxue Wang ◽  
Chuanhao Xi

Complex geological conditions such as fault fracture zone will have a significant adverse impact on tunnel engineering, and collapse, large deformation, and other problems are prominent. The research on the large deformation mechanism and control of tunnel crossing fault fracture zone can provide guidance for tunnel safety construction. Based on the Jingzhai tunnel, combined with geological analysis, theoretical research, numerical simulation, and other means, this paper studies and analyzes the large deformation mechanism of the tunnel. The control effect of different advanced reinforcement measures is studied.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guannan Zhou ◽  
Zijiang Zhao ◽  
Zhanping Song ◽  
Hongjian Wang

Due to poor engineering geological conditions of Liujiazhuang tunnel on Shanghai-Kunming Passenger Dedicated Line, the large deformation of weak rock occurs repeatedly during tunnel construction. In this paper, the large-scale finite element software ABAQUS is used to simulate the construction process of a large-section tunnel in weak surrounding rock. It is found that when tunnel face passes through the coal seam, the displacement and stress simulated by the bench method increase abruptly. The maximum stress reaches up to 18 MPa, and displacement reaches 45 mm, which is about twice when without crossing coal seam. It is technically feasible to use the bench method for tunnel construction, under the condition when large settlements is allowed; additionally, the bench method has better technical and economic benefits than that of the CD method. Through the comparative analysis of onsite monitoring data and numerical simulation results, it can be seen that the tunnel is in a dangerous state when passing through the coal seam and measures such as strengthening support or auxiliary advance support should be taken immediately to control the surrounding rock and to ensure tunnel construction safety.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Yu ◽  
Jianfei Lu ◽  
Dingchao Chen ◽  
Yuxin Pan ◽  
Xiangqian Zhao ◽  
...  

Based on the research background of large section roadway with top coal (LSRTC) in thick coal seam mining in Wangzhuang Coal Mine, Shanxi Province, China, catastrophe characteristics of the surrounding rock of the LSRTC were investigated and summarized. Based on the principle of damage mechanics, the critical size discriminant of the LSRTC was deduced, and the induction mechanism of section size effect and tectonic stress effect on the roadway surrounding rock disaster was revealed. Accordingly, the roadway surrounding rock control principle with the basic idea of “stabilizing and controlling top coal, reconstructing the coal wall, and limiting floor heave” was put forward, and the roadway surrounding rock stability control countermeasures with the core technology of “strong pressure support for roof + grouting reinforcement for two sides + bolt barrier for floor angle” were developed, which solved the surrounding rock control problem of the LSRTC under the action of tectonic stress and provided a useful reference for the difficult problem of roadway surrounding rock control under similar conditions.


Author(s):  
Tu Hong-sheng ◽  
Liu Song-yong ◽  
Huang Chang-wen ◽  
Guo Chen-ye ◽  
Zhang Xiao-bo ◽  
...  

2011 ◽  
Vol 71-78 ◽  
pp. 644-650 ◽  
Author(s):  
Jin Yu Dong ◽  
Ji Hong Yang ◽  
Guo Xiang Yang ◽  
Fa Quan Wu

Jinoping No.1 is a dominant reservoir cascade hydropower station which locates at the downstream of Yalong river. The underground powerhouse locates at the right bank of the dam, lithology is marble that belongs to the second member of Zagunao group. It is constructed at region with very complicated geological conditions and high geo-stress. Concrete cracking, spalling and steel buckling and bending occurred at the downstream crown after supporting. This paper analysed the causes of deformation and failure through geological analysis and numerical simulation, and concluded that deformation and failure mainly occurred at the region where the quality of surrounding rock belongs to Ⅲ1 and had nothing to do with the unstable block cut by cracks; stress field of surrounding rock varied continueously with the proceeding of successive excavation of underground powerhouse, so the compressive stress and shear stress concentration occurred which caused the compression and shear failure of downstream crown and made it bending to the free face. It is significant to the further enforcement of this project and to the research on other similar underground caverns theoretically and practically.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fei Liu ◽  
Yongsheng Han

The deformation control of the surrounding rock during gob-side entry driving along deeply fully mechanized caving island working face is one of the main bottlenecks affecting the successful and efficient production in modern mining. The prior ordinary fully mechanized caving theories have been difficult in ensuring the safe and efficient mining along island working face during gob-side entry driving under the complex conditions in the west. Therefore, it is of great theoretical and practical significance to carry out the research on the deformation mechanism and control of the surrounding rock during gob-side entry driving along deeply fully mechanized caving island working face. This paper, by means of experimental research, theoretical analysis, numerical calculation, and field industrial test, systemically researched the deformation characteristics of the surrounding rock and the law of strata behaviors during gob-side entry driving along deeply fully mechanized caving island working face.


Sign in / Sign up

Export Citation Format

Share Document