scholarly journals Resonant modal interactions in micro/nano-mechanical structures

Author(s):  
Oriel Shoshani ◽  
Steven W. Shaw

AbstractThis paper considers nonlinear interactions between vibration modes with a focus on recent studies relevant to micro- and nanoscale mechanical resonators. Due to their inherently small damping and high susceptibility to nonlinearity, these devices have brought to light new phenomena and offer the potential for novel applications. Nonlinear interactions between vibration modes are well known to have the potential for generating a “zoo” of complicated bifurcation patterns and a wide variety of dynamic behaviors, including chaos. Here, we focus on more regular, robust, and predictable aspects of their dynamics, since these are most relevant to applications. The investigation is based on relatively simple two-mode models that are able to capture and predict a wide range of transient and sustained dynamical behaviors. The paper emphasizes modeling and analysis that has been done in support of recent experimental investigations and describes in full detail the analysis and attendant insights obtained from the models that are briefly described in the experimental papers. Standard analytical tools are employed, but the questions posed and the conclusions drawn are novel, as motivated by observations from experiments. The paper considers transient dynamics, response to harmonic forcing, and self-excited systems and describes phenomena such as extended coherence time during transient decay, zero dispersion response, and nonlinear frequency veering. The paper closes with some suggested directions for future studies in this area.

2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Author(s):  
Christoph Brandstetter ◽  
Sina Stapelfeldt

Non-synchronous vibrations arising near the stall boundary of compressors are a recurring and potentially safety-critical problem in modern aero-engines. Recent numerical and experimental investigations have shown that these vibrations are caused by the lock-in of circumferentially convected aerodynamic disturbances and structural vibration modes, and that it is possible to predict unstable vibration modes using coupled linear models. This paper aims to further investigate non-synchronous vibrations by casting a reduced model for NSV in the frequency domain and analysing stability for a range of parameters. It is shown how, and why, under certain conditions linear models are able to capture a phenomenon, which has traditionally been associated with aerodynamic non-linearities. The formulation clearly highlights the differences between convective non-synchronous vibrations and flutter and identifies the modifications necessary to make quantitative predictions.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


2020 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Fuchun Yang ◽  
Dianrui Wang

Vibration properties of high-speed rotating and revolving planet rings with discrete and partially distributed stiffnesses were studied. The governing equations were obtained by Hamilton’s principle based on a rotating frame on the ring. The governing equations were cast in matrix differential operators and discretized, using Galerkin’s method. The eigenvalue problem was dealt with state space matrix, and the natural frequencies and vibration modes were computed in a wide range of rotation speed. The properties of natural frequencies and vibration modes with rotation speed were studied for free planet rings and planet rings with discrete and partially distributed stiffnesses. The influences of several parameters on the vibration properties of planet rings were also investigated. Finally, the forced responses of planet rings resulted from the excitation of rotating and revolving movement were studied. The results show that the revolving movement not only affects the free vibration of planet rings but results in excitation to the rings. Partially distributed stiffness changes the vibration modes heavily compared to the free planet ring. Each vibration mode comprises several nodal diameter components instead of a single component for a free planet ring. The distribution area and the number of partially distributed stiffnesses mainly affect the high-order frequencies. The forced responses caused by revolving movement are nonlinear and vary with a quasi-period of rotating speed, and the responses in the regions supported by partially distributed stiffnesses are suppressed.


2014 ◽  
Vol 657 ◽  
pp. 306-310
Author(s):  
Lăcrămioara Apetrei ◽  
Vasile Rață ◽  
Ruxandra Rață ◽  
Elena Raluca Bulai

Research evolution timely tendencies, in the nonconventional technologies field, are: manufacture conditions optimization and complex equipments design. The increasing of ultrasonic machining use, in various technologies is due to the expanding need of a wide range materials and high quality manufacture standards in many activity fields. This paper present a experimental study made in order to analyze the welded zone material structure and welding quality. The effects of aluminium ultrasonic welding parameters such as relative energy, machining time, amplitude and working force were compared through traction tests values and microstructural analysis. Microhardness tests were, also, made in five different points, two in the base material and three in the welded zone, on each welded aluminium sample. The aluminum welding experiments were made at the National Research and Development Institute for Welding and Material Testing (ISIM) Timişoara. The ultrasonic welding temperature is lower than the aluminium melting temperature, that's so our experiments reveal that the aluminium ultrasonic welding process doesn't determine the appearance of moulding structure. In the joint we have only crystalline grains deformation, phase transformation and aluminium diffusion.


2019 ◽  
Author(s):  
Prashun Gorai ◽  
Robert McKinney ◽  
Nancy Haegel ◽  
Andriy Zakutayev ◽  
Vladan Stevanovic

Power electronics (PE) are used to control and convert electrical energy in a wide range of applications from consumer products to large-scale industrial equipment. While Si-based power devices account for the vast majority of the market, wide band gap semiconductors such as SiC, GaN, and Ga2O3 are starting to gain ground. However, these emerging materials face challenges due to either non-negligible defect densities, or high synthesis and processing costs, or poor thermal properties. Here, we report on a broad computational survey aimed to identify promising materials for future power electronic devices beyond SiC, GaN, and Ga2O3. We consider 863 oxides, sulfides, nitrides, carbides, silicides, and borides that are reported in the crystallographic database and exhibit finite calculated band gaps. We utilize ab initio methods in conjunction with models for intrinsic carrier mobility, and critical breakdown field to compute the widely used Baliga figure of merit. We also compute the lattice thermal conductivity as a screening parameter. In addition to correctly identifying known PE materials, our survey has revealed a number of promising candidates exhibiting the desirable combination of high figure of merit and high lattice thermal conductivity, which we propose for further experimental investigations.


2019 ◽  
Vol 81 (1) ◽  
pp. 118-128
Author(s):  
V. V. Balandin ◽  
V. V. Balandin ◽  
V. V. Parkhachev

Investigating impact interaction of solid and deformed bodies with obstacles of various physical natures requires developing experimental methodologies of registering the parameters of the interaction process. In experimental investigations of impact interaction of solids, it is common practice to measure displacement of strikers as a function of time, as well as their velocity and deceleration. To determine the displacement and velocity of a striker, a radio-interferometric methodology of registering the displacement of its rear end is proposed. In contrast with the registration methods based on high-speed filming and pulsed X-ray photography, the method using a millimeter-range radio-interferometer provides continuous high-accuracy registering of the displacement of the rear end of a striker in a wide range of displacement values. To test the effectiveness of the methodology, a series of experiments have been conducted on registering the motion of a cylindrical striker of an aluminum alloy, fired from a 20mm-dia gas gun. The displacement of the striker was also monitored using high-speed filming. The results of measuring using the two methodologies differ within the limits of the error of measurement. Based on the results of the above experiments, it has been concluded that the methodology of determining the displacement and velocity of strikers in a ballistic experiment using a mm-range radio-interferometer makes it possible to measure practically continuously large displacements (100 mm and larger) to a safe accuracy. The present methodology can be used for measuring the displacement and velocity of the rear end of a striker interacting with obstacles of various physical natures (metals, ceramics, soils, concretes, etc.).


Author(s):  
M. X. Zhao ◽  
B. Balachandran ◽  
M. A. Davies ◽  
J. R. Pratt

Abstract In this paper, numerical and experimental investigations conducted into the dynamics and stability of partial immersion milling operations are presented. A mechanics based model is used for simulations of a wide range of milling operations and instabilities that arise due to regeneration and/or impact effects are studied. Poincaré sections are used to assess the stability of motions. The studies reveal that apart from Hopf bifurcation of a periodic motion, a period-doubling bifurcation of a periodic motion may also lead to chatter in partial immersion milling operations. Issues such as tooth contact time variation and structure of stability charts are also discussed.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhanke Liu ◽  
Steven Tipton ◽  
Dinesh Sukumar

Summary Coiled tubing (CT) integrity is critical for well intervention operations in the field. To monitor and manage tubing integrity, the industry has developed a number of computer models over the past decades. Among them, low-cycle fatigue (LCF) modeling plays a paramount role in safeguarding tubing integrity. LCF modeling of CT strings dates back to the 1980s. Recently, novel algorithms have contributed to developments in physics-based modeling of tubing fatigue and plasticity. When CT trips into and out of the well, it goes through bending/straightening cycles under high differential pressure. Such tough conditions lead to low- or ultralow-cycle fatigue, limiting CT useful life. The model proposed in this study is derived from a previous one and is based on rigorously derived material parameters to compute the evolution of state variables from a wide range of loading conditions. Through newly formulated plasticity and strain parameters, a physics-based damage model predicts CT fatigue life, along with diametral growth and wall thinning. The revised modeling approach gives results for CT damage accumulation, diametral growth, and wall thinning under realistic field conditions, with experimental validation. For 20 different CT alloys, it was observed that the model improved in accuracy overall by approximately 18.8% and consistency by 14.0%, for constant pressure data sets of more than 4,500 data points. The modeling results provide insights into the nonlinear nature of fatigue damage accumulation. This study allowed developing recommendations to guide future analytical modeling and experimental investigations, summarize theoretical findings in physics-based LCF modeling, and provide practical guidelines for CT string management in the field. The study provides a fundamental understanding of CT LCF and introduces novel algorithms in plasticity and damage.


Author(s):  
M. Akif Özbek ◽  
Steve Y. Liu ◽  
James T. Gordon ◽  
David S. Newman ◽  
Ali R. Atilgan

Abstract Typical vibration modes of aircraft braking systems are discussed in this paper. Special attention is given to squeal vibrations of carbon brakes. From flight tests, a wide range of response amplitudes are analyzed to determine the nature of the motion. Fourier analysis indicates the presence of a high amplitude limit cycle which seems to be initiated by a transient chaotic region. A singular system approach based on a time delay embedding confirms this finding. Time delay analysis makes it possible to contruct model equations via which intrinsic dynamics of the system can be recovered, and opens up the possibility of preventing large amplitude vibration by controlling the chaotic motion.


Sign in / Sign up

Export Citation Format

Share Document