Differential Changes in D1 Protein Content and Quantum Yield of Wild and Cultivated Barley Genotypes Caused by Moderate and Severe Drought Stress in Relation to Oxidative Stress

Author(s):  
Ali Akbar Ghotbi-Ravandi ◽  
Mahsa Sedighi ◽  
Keyvan Aghaei ◽  
Ahmad Mohtadi
Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2400
Author(s):  
Manal El-Zohri ◽  
Naseem A. Al-Wadaani ◽  
Sameera O. Bafeel

This study explored the effectiveness of green zinc oxide nanoparticles (ZnO-NPs) foliar spray on tomato growth and oxidative stress relief under drought conditions. Tomato plant subjected to four water regimes (100, 75, 50, and 25% FC), and in the same while seedlings were sprayed with 25, 50, and 100 mg/L green ZnO-NPs. The results showed that tomato growth parameters reduced significantly by increasing drought stress levels, while ZnO-NPs enhanced plant growth under all studied drought levels. Out of three ZnO-NPs concentrations tested, 25 and 50 mg/L ZnO-NPs proved to be the optimum treatments for alleviating drought stress. They increased shoot and root biomass compared to untreated controls. Application of 25 and 50 mg/L ZnO-NPs enhanced shoot dry weight by about 2–2.5-fold, respectively, under severe drought conditions (25%) compared to ZnO-NPs untreated plants. The application of 25 and 50 mg/L green ZnO-NPs decreased the drought-induced oxidative stress as indicated by the reduction in malondialdehyde and hydrogen peroxide concentrations compared to untreated controls. While 100 mg/L ZnO-NPs further increased oxidative stress. The beneficial effects of ZnO-NPs were evident in the plants’ defensive state, in which the concentration of ascorbic acid, free phenols, and the activity of superoxide dismutase, catalase, and ascorbate peroxidase were maintained at higher levels compared to NPs-untreated plants. At severe drought conditions, 25 mg/L ZnO-NPs induced SOD, CAT, and APX activity by about 3.99-, 3.23-, and 2.82-fold of their corresponding controls, respectively. Likewise, at 25% FC, SOD, CAT, and APX activity increased with 50 mg/L ZnO-NPs by about 4.58-, 3.57-, and 3.25-fold consecutively compared with their respective controls. Therefore, foliar use of green ZnO-NPs at lower concentrations might be suggested as an efficient way for enhancing tomato tolerance to drought stress.


2021 ◽  
Author(s):  
Xiaojian Wu ◽  
Huan Wang ◽  
Fanrong Zeng ◽  
Junmei Wang

Abstract β-amylase activity is related to the polymorphism of Bmy1 intron III; however, no attention has been given to such relationship under environmental stresses like drought. In this study, 73 cultivated barley genotypes and 52 Tibetan wild barley accessions were used to test the association between Bmy1 gene intron III polymorphisms and β-amylase activity under drought stress. Our results showed that three alleles, Bmy1.a, Bmy1.b and Bmy1.c, existed in the examined barley genotypes. Tibetan wild barley had higher proportion of Bmy1.b, whereas cultivated barley showed higher proportion of Bmy1.a. Impressively, barley genotypes with Bmy1.b showed significant increase in β-amylase activity under drought stress, compared with those with Bmy1.a or Bmy1.c, indicating that Bmy1.b allele might provide more chances for developing barley cultivars with higher β-amylase activity under water stress than both Bmy1.a and Bmy1.c alleles. Furthermore, the Tibetan wild barley XZ147, belonging to Bmy1.b allele type, showed significant higher β-amylase activity than the cultivar Triumph under drought stress. This might result from the unique amino acid substitution M527 or the amino acid composition of R115, D165, A233, S347 and M527 of XZ147.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 190 ◽  
Author(s):  
Sharma ◽  
Zheng

Drought stress adversely effects physiological and biochemical processes of plants, leading to a reduction in plant productivity. Plants try to protect themselves via activation of their internal defense system, but severe drought causes dysfunction of this defense system. The imbalance between generation and scavenging of reactive oxygen species (ROS) leads to oxidative stress. Melatonin, a multifunctional molecule, has the potential to protect plants from the adverse effects of drought stress by enhancing the ROS scavenging efficiency. It helps in protection of photosynthetic apparatus and reduction of drought induced oxidative stress. Melatonin regulates plant processes at a molecular level, which results in providing better resistance against drought stress. In this review, the authors have discussed various physiological and molecular aspects regulated by melatonin in plants under drought conditions, along with their underlying mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Kyeong Shin ◽  
Shiva Ram Bhandari ◽  
Jun Gu Lee

Chlorophyll fluorescence (CF) is used to measure the physiological status of plants affected by biotic and abiotic stresses. Therefore, we aimed to identify the changes in CF parameters in grafted watermelon seedlings exposed to salt, drought, and high and low temperatures. Grafted watermelon seedlings at the true three-leaf stage were subjected to salinity levels (0, 50, 100, 150, and 200 mM) and temperature [low (8°C), moderate (24°C), and high (40°C)] stresses for 12 days under controlled environmental conditions independently. Eight CF parameters were measured at 2-day intervals using the FluorCam machine quenching protocol of the FluorCam machine. The seedlings were also exposed to drought stress for 3 days independent of salinity and temperature stress; CF parameters were measured at 1-day intervals. In addition, growth parameters, proline, and chlorophyll content were evaluated in all three experiments. The CF parameters were differentially influenced depending on the type and extent of the stress conditions. The results showed a notable effect of salinity levels on CF parameters, predominantly in maximum quantum yield (Fv/Fm), non-photochemical quenching (NPQ), the ratio of the fluorescence decrease (Rfd), and quantum yield of non-regulated energy dissipation in PSII [Y(NO)]. High temperature had significant effects on Rfd and NPQ, whereas low temperature showed significant results in most CF parameters: Fv/Fm, Y(NO), NPQ, Rfd, the efficiency of excitation capture of open photosystem II (PSII) center (Fv′/Fm′), and effective quantum yield of photochemical energy conversion in PSII [Y(PSII)]. Only NPQ and Rfd were significantly influenced by severe drought stress. Approximately, all the growth parameters were significantly influenced by the stress level. Proline content increased with an increase in stress levels in all three experiments, whereas the chlorophyll (a and b) content either decreased or increased depending upon the stressor. The results provided here may be useful for understanding the effect of abiotic stresses on CF parameters and the selection of index CF parameters to detect abiotic stresses in grafted watermelon seedlings.


2014 ◽  
Vol 73 (2) ◽  
pp. 315-332 ◽  
Author(s):  
Aykut Saglam ◽  
Asim Kadioglu ◽  
Mehmet Demiralay ◽  
Rabiye Terzi

Abstract Effects of leaf rolling (LR) on maize photosynthesis under severe drought stress were studied in two cultivars with opposite drought responses, Batem 56-55 (drought tolerant) and Batem 51-52 (drought sensitive). Drought stress and artificial prevention of leaf rolling (PLR) were applied at grain filling stage for 30 days. LR in Batem 56-55 occurred later than in Batem 51-52. Leaf water potential (Ψleaf) did not change in Batem 56-55 but decreased in Batem 51-52 at LR. Maximum quantum yield of photosystem II (Fv/Fm), effective quantum yield of photosystem II (ΦPSII) and electron transport rate (ETR) of the cultivars decreased during LR more significantly in Batem 56-55 in comparison to Batem 51-52. The same was observed for the decrease in net photosynthetic rate (Pn), stomatal conductance (gs), transpiration (E) and intracellular level of CO2 (C). Rubis-co activity and content were reduced at LR, but were less affected in Batem 56-55 than in Batem 51-52. Ear and kernel weights also decreased at LR. All parameters at PLR were more reduced than those of LR. These results implied that LR was an important and necessary mechanism protecting photosynthesis and reducing yield loss under drought stress by maintaining the leaf hydration, preventing loss of the photosynthetic pigments, sustaining the activity of PSU, keeping the stornata open, and conserving the activity of Rubisco.


2021 ◽  
Author(s):  
Hanifeh Seyed Hajizadeh ◽  
Sahar Azizi ◽  
Farzad Rasouli ◽  
Volkan Okatan

Abstract Drought is a major abiotic stress that prevents plant growth and efficiency. Silicon increases drought tolerance by regulating the biosynthesis and acumulation of some osmolits.This study was conducted to modulate dought stress induced by Polyethylene glycol (PEG) in two genotypes of damasks by nano silicon dioxide (nSiO2). The experiment included three levels of nSiO2 (0, 50 and 100 mg L-1) and PEG (0, 25, 50, 75 and 100 g L-1) added to culture medium. Drought stress decreased protein content while Maragheh genotype under normal conditios and treating with 100 mg L-1 nSiO2 had the highest protein content. Under severe drought stress Maragheh genotype had stronger membrane stability index (MSI) than Kashan genotype and explants treated with 100 mg L-1 nSiO2 had the highest MSI in control plants. Contrary to the negative effects of drought, plants treated with 100 mg L−1 nSiO2 maintained more of their photosynthetic parameters in comparison with other treatments and showed higher amount of protein and proline in Maragheh rather than kashan genotype. Drought stress reduced the values of Fm, Fv/Fm, and Fv. In general, under drought stress, treatment with nSiO2 increased the mentioned characteristics before. It also improved water deficit tolerance through enhancing in the activity of antioxidant enzymes such as catalase, peroxidase, guaiacol peroxidase and superoxide dismutase while the amount of lipid peroxidation and hydrogen peroxide decreased. The results showed that Maragheh genotype may be more stronger in counter with water deficit by improving in water balance, antioxidant enzyme activities, and membrane stability.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 332
Author(s):  
Min Li ◽  
Haoyun Wang ◽  
Xizhou Zhao ◽  
Zhongke Lu ◽  
Xueguang Sun ◽  
...  

Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.


2020 ◽  
Vol 47 (9) ◽  
pp. 825 ◽  
Author(s):  
Maryam Rezayian ◽  
Vahid Niknam ◽  
Hassan Ebrahimzadeh

The aim of this research was to gauge the alternations in the lipid peroxidation and antioxidative enzyme activity in two cultivars (cv. RGS003 and cv. Sarigol) of canola under drought stress and drought tolerance amelioration by penconazole (PEN) and calcium (Ca). Plants were treated with different polyethylene glycol (PEG) concentrations (0, 5, 10 and 15%) without or with PEN (15 mg L–1) and Ca (15 mM). The Ca treatment prevented the negative effects of drought on fresh weight (FW) in RGS003 and Sarigol at 5 and 15% PEG respectively. Ca and PEN/Ca treatments caused significant induction in the proline content in Sarigol at 15% PEG; the latter treatment was accompanied by higher glycine betaine (GB), lower malondialdehyde (MDA) and growth recovery. Hydrogen peroxide (HO2) content in Sarigol was proportional to the severity of drought stress and all PEN, Ca and PEN/Ca treatments significantly reduced the H2O2 content. PEN and PEN/Ca caused alleviation of the drought-induced oxidative stress in RGS003. RGS003 cultivar exhibited significantly higher antioxidative enzymes activity at most levels of drought, which could lead to its drought tolerance and lower MDA content. In contrast to that of Sarigol, the activity of catalase and superoxide dismutase (SOD) increased with Ca and PEN/Ca treatments in RGS003 under low stress. The application of PEN and Ca induced significantly P5CS and SOD expression in RGS003 under drought stress after 24 h. Overall, these data demonstrated that PEN and Ca have the ability to enhance the tolerance against the drought stress in canola plants.


Sign in / Sign up

Export Citation Format

Share Document