scholarly journals Foliar Sprayed Green Zinc Oxide Nanoparticles Mitigate Drought-Induced Oxidative Stress in Tomato

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2400
Author(s):  
Manal El-Zohri ◽  
Naseem A. Al-Wadaani ◽  
Sameera O. Bafeel

This study explored the effectiveness of green zinc oxide nanoparticles (ZnO-NPs) foliar spray on tomato growth and oxidative stress relief under drought conditions. Tomato plant subjected to four water regimes (100, 75, 50, and 25% FC), and in the same while seedlings were sprayed with 25, 50, and 100 mg/L green ZnO-NPs. The results showed that tomato growth parameters reduced significantly by increasing drought stress levels, while ZnO-NPs enhanced plant growth under all studied drought levels. Out of three ZnO-NPs concentrations tested, 25 and 50 mg/L ZnO-NPs proved to be the optimum treatments for alleviating drought stress. They increased shoot and root biomass compared to untreated controls. Application of 25 and 50 mg/L ZnO-NPs enhanced shoot dry weight by about 2–2.5-fold, respectively, under severe drought conditions (25%) compared to ZnO-NPs untreated plants. The application of 25 and 50 mg/L green ZnO-NPs decreased the drought-induced oxidative stress as indicated by the reduction in malondialdehyde and hydrogen peroxide concentrations compared to untreated controls. While 100 mg/L ZnO-NPs further increased oxidative stress. The beneficial effects of ZnO-NPs were evident in the plants’ defensive state, in which the concentration of ascorbic acid, free phenols, and the activity of superoxide dismutase, catalase, and ascorbate peroxidase were maintained at higher levels compared to NPs-untreated plants. At severe drought conditions, 25 mg/L ZnO-NPs induced SOD, CAT, and APX activity by about 3.99-, 3.23-, and 2.82-fold of their corresponding controls, respectively. Likewise, at 25% FC, SOD, CAT, and APX activity increased with 50 mg/L ZnO-NPs by about 4.58-, 3.57-, and 3.25-fold consecutively compared with their respective controls. Therefore, foliar use of green ZnO-NPs at lower concentrations might be suggested as an efficient way for enhancing tomato tolerance to drought stress.

2016 ◽  
Vol 5 (4) ◽  
pp. 1066-1077 ◽  
Author(s):  
Anu Pal ◽  
Shamshad Alam ◽  
Lalit K. S. Chauhan ◽  
Prem N. Saxena ◽  
Mahadeo Kumar ◽  
...  

UVB exposure enhances the internalization of ZnO-NPs and caused changes in surface morphology of SKH-1 mouse skin.


2019 ◽  
Vol 20 (6) ◽  
pp. 465-475 ◽  
Author(s):  
Fawziah A. Al-Salmi ◽  
Reham Z. Hamza ◽  
Nahla S. El-Shenawy

Background: Zinc oxide nanoparticles (ZnO NPs) are increasingly utilized in both industrial and medical applications. Therefore, the study was aimed to investigate the effect of green nanoparticle complex (green tea extract/zinc oxide nanoparticles complex, GTE/ZnO NPs) on oxidative stress induced by monosodium glutamate (MSG) on the liver of rats. Methods: Wistar male rats (n=64) weighing between 200-250 g were divided randomly into eight groups: control group was given physiological saline (1 mg/kg), two groups were treated with two different doses of MSG (MSG-LD, MSG-HD; 6 and 17.5 mg/Kg, respectively), GTE was given 1 mg/mL, 5th group was treated with ZnO NPs and 6th group was treated with GTE/ZnO NPs complex while, 7th and 8th groups were treated with MSG-LD + GTE/ZnO NPs complex and MSG-HD + GTE/ZnO NPs complex, respectively. All substances were given orally for 30 consecutive days. At the end of the study, the liver was homogenized for measurement of the oxidative stress status and anti-inflammatory biomarkers as well as histological and transmission alternations. Results: Results showed that the antioxidant enzymes activity and glutathione level were significantly decreased in MSG groups than control in a dose-dependent manner. Conversely, the malondialdehyde and inflammatory cytokines levels were significantly increased in MSG groups than the control group. The liver indicated no evidence of alteration in oxidative status, anti-inflammatory and morphological parameters in GTE, ZnO NPs and GTE/ZnO NPs complex groups. Conclusion: In conclusion, MSG at both doses caused oxidative stress and inflammation on liver after 28 days of exposure that supported histological analysis and transmission view of hepatic parenchyma. GTE/ZnO NPs act as partial hepato-protective against MSG.


2019 ◽  
Vol 20 (16) ◽  
pp. 4042 ◽  
Author(s):  
Jingcao Shen ◽  
Dan Yang ◽  
Xingfan Zhou ◽  
Yuqian Wang ◽  
Shichuan Tang ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have shown adverse health impact on the human male reproductive system, with evidence of inducing apoptosis. However, whether or not ZnO NPs could promote autophagy, and the possible role of autophagy in the progress of apoptosis, remain unclear. In the current study, in vitro and in vivo toxicological responses of ZnO NPs were explored by using a mouse model and mouse Leydig cell line. It was found that intragastrical exposure of ZnO NPs to mice for 28 days at the concentrations of 100, 200, and 400 mg/kg/day disrupted the seminiferous epithelium of the testis and decreased the sperm density in the epididymis. Furthermore, serum testosterone levels were markedly reduced. The induction of apoptosis and autophagy in the testis tissues was disclosed by up-regulating the protein levels of cleaved Caspase-8, cleaved Caspase-3, Bax, LC3-II, Atg 5, and Beclin 1, accompanied by down-regulation of Bcl 2. In vitro tests showed that ZnO NPs could induce apoptosis and autophagy with the generation of oxidative stress. Specific inhibition of autophagy pathway significantly decreased the cell viability and up-regulated the apoptosis level in mouse Leydig TM3 cells. In summary, ZnO NPs can induce apoptosis and autophagy via oxidative stress, and autophagy might play a protective role in ZnO NPs-induced apoptosis of mouse Leydig cells.


2021 ◽  
Vol 25 (1) ◽  
pp. 1-10
Author(s):  
Niloufar Darbandi ◽  
◽  
Zeynab Vasheghani Farahani ◽  
Hamidreza Momeni ◽  
◽  
...  

Background: Zinc oxide Nanoparticles (NPs) present irreversible effects on the nervous system, memory, and learning. Objective: The current study aimed to investigate the effects of pentoxifylline on memory impairments, CA1 hippocampal pyramidal cells, and blood serum antioxidant enzymes in male rats treated with zinc oxide NPs. Methods: Male Wistar rats were divided into the control, zinc oxide NPs (1.25 mg/kg), pentoxifylline (50 mg/kg), and pentoxifylline with zinc oxide NPs groups. In all study groups, saline, zinc oxide NPs, and pentoxifylline were intraperitoneally injected 30 minutes before training. In the co-treatment group, pentoxifylline was injected one hour before injecting Zno NPs. After performing the behavioral test, the tested animals’ brains were fixed and the number of healthy neurons in the CA1 region of the hippocampus was counted. In all research groups, malondialdehyde levels, total antioxidant power, superoxide dismutase levels, and glutathione peroxidase in blood serum were measured. Results: Zinc oxide nanoparticles decreased memory and the number of healthy neurons in the CA1 region of the hippocampus and increased oxidative stress in blood serum, compared to the controls. In the co-treatment group, using pentoxifylline improved the above-mentioned factors and reached the level of the control group. Pentoxifylline alone presented no significant effect on the aforementioned characteristics, compared to the control group. Conclusion: ZnO NPs may decrease memory retrieval and cause cell death in the pyramidal neurons of the CA1 region of the hippocampus by increasing oxidative stress. Pentoxifylline, as a potent antioxidant, can prevent the harmful effects of ZnO NPs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1066 ◽  
Author(s):  
Ľudmila Balážová ◽  
Matej Baláž ◽  
Petr Babula

Nanomaterials, including zinc oxide nanoparticles (ZnO NPs), have a great application potential in many fields, such as medicine, the textile industry, electronics, and cosmetics. Their impact on the environment must be carefully investigated and specified due to their wide range of application. However, the amount of data on possible negative effects of ZnO NPs on plants at the cellular level are still insufficient. Thus, we focused on the effect of ZnO NPs on tobacco BY-2 cells, i.e., a widely accepted plant cell model. Adverse effects of ZnO NPs on both growth and biochemical parameters were observed. In addition, reactive oxygen and nitrogen species visualizations confirmed that ZnO NPs may induce oxidative stress. All these changes were associated with the lipid peroxidation and changes in the plasma membrane integrity, which together with endoplasmatic reticulum and mitochondrial dysfunction led to autophagy and programmed cell death. The present study demonstrates that the phytotoxic effect of ZnO NPs on the BY-2 cells is very complex and needs further investigation.


2021 ◽  
Author(s):  
Marwa E. Hassan ◽  
Rasha R. Hassan ◽  
Kawther A. Diab ◽  
Aziza A. El-Nekeety ◽  
Nabila S. Hassan ◽  
...  

Abstract This study aimed to evaluate the potential protective role of encapsulated thyme oil (ETO) against zinc oxide nanoparticles (ZnO-NPs). ETO was prepared using a mixture of whey protein isolate, maltodextrin, and gum Arabic, and ZnO-NPs were synthesized using parsley extract. Six groups of male Sprague-Dawley rats were treated orally for 21 days included the control group, ZnO-NPs-treated group (25 mg/kg b.w), ETO-treated groups at low or high dose (50, 100 mg/kg b.w) and the groups received ZnO-NPs plus ETO at the two doses. Blood and tissue samples were collected for different assays. The results showed that carvarcol and thymol were the major components in ETO among 13 compounds isolated by GC-MS. ZnO-NPs were spherical and ETOs were round in shape with an average size of 38 and 311.8 nm, respectively. Administration of ZnO-NPs induced oxidative stress, DNA damage, biochemical, ctyogentical, and histological changes in rats. ETO at the tested doses alleviated these disturbances and showed protective effects against the hazards of ZnO-NPs. It could be concluded that encapsulation of thyme oil using whey protein isolate, maltodextrin and gum Arabic improved ETO properties, probably possess synergistic effects, and can be used as a promising tool in pharmaceutical and food applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niveen M. Daoud ◽  
Mohamed S. Aly ◽  
Omaima H. Ezzo ◽  
Naglaa A. Ali

AbstractZinc oxide nanoparticles (ZnO NPs) demonstrate potential positive effects on reproduction. However, their protective role against the reproductive toxicity pollutants has not yet been adequately studied at the molecular level. This study was designed to assess this objective using Benzo[α]pyrene B[a]P as reproductive toxic agent . Forty-eight mature male rats were randomly distributed into six groups: Group1 (negative control); Groups 2 and 3 (positive control I and II, wherein the animals were treated with 10 and 30 mg ZnO NPs/kg BW, respectively); Group 4 (B[a]P group; treated with 150 mg B[a]P/kg BW); and Groups 5 and 6 (subjected to B[a]P treatment co-administered with different concentrations of ZnO NPs). We investigated oxidative stress biomarkers; cholesterol side-chain cleavage enzyme (CYP11A1), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD) gene expression; testosterone levels; and histopathology of the liver, kidney, and testicles. The B[a]P-treated group showed significant deterioration in all reproductive parameters and displayed induced oxidative stress. ZnO NPs remarkably reduced oxidative stress, effectively upregulated the mRNA levels of CY11A1, StAR, and 3β-HSD, and improved the histological pictures in the examined organs. At their investigated doses and given their NPs properties, ZnO NPs demonstrated a marked ameliorative effect against the reproductive toxic effects of B[a]P. Further studies are needed to thoroughly investigate the molecular mechanisms of ZnO NPs.


2021 ◽  
Author(s):  
Niveen M. Daoud ◽  
S Aly Mohamed ◽  
Omaima H. Ezzo ◽  
Naglaa A. Ali

Abstract Although Zinc oxide nanoparticles (ZnO NPs) in low doses have potentially positive effects on reproduction by their antioxidant effects, the defensive role of Zinc nanomaterials against environmental pollutants that affect male reproduction has not been adequately studied. We designed our study to assess the impact of ZnO NPs towards reproductive dysfunction induced by Benzo[α]Pyrene (B[a]P). Forty-eight mature male rats were randomly distributed into six equal groups: G1; negative control, G2&3- positive control I &II (either 10 or 30 mg ZnO NPs / kg BW); G4. (150 mg Bap / kg BW), G 5 & 6 (Co- administrated B[a]P with different concentrations of ZnO NPs). Oxidative stress biomarkers, semiquantitative real-time PCR for steroidogenic enzymes (CY11A1, StAR, and 3β- HSD), testosterone levels and histopathology in the liver, kidney, and testicles were examined for this investigation. B[a] P treated group showed significant deterioration in all reproductive parameters and induced oxidative stress. Co-administration ZnO NPs eased oxidative stress and effectively increased the expression of CY11A1, StAR, and 3β- HSD and improved histopathological changes in the examined organs. Our results using the selected doses and with Nano particle properties confirm that ZnO NPs have an obvious ameliorative effect against B[a] P.


Sign in / Sign up

Export Citation Format

Share Document