scholarly journals Involvement of P2X7 receptors in chronic pain disorders

Author(s):  
Wen-Jing Ren ◽  
Peter Illes

AbstractChronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1β (IL-1β) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.

Author(s):  
Sutian Wang ◽  
Kunli Zhang ◽  
Yuchang Yao ◽  
Jianhao Li ◽  
Shoulong Deng

Numerous factors trigger male infertility, including lifestyle, the environment, health, medical resources and pathogenic microorganism infections. Bacterial infections of the male reproductive system can cause various reproductive diseases. Several male reproductive organs, such as the testicles, have unique immune functions that protect the germ cells from damage. In the reproductive system, immune cells can recognize the pathogen-associated molecular patterns carried by pathogenic microorganisms and activate the host’s innate immune response. Furthermore, bacterial infections can lead to oxidative stress through multiple signaling pathways. Many studies have revealed that oxidative stress serves dual functions: moderate oxidative stress can help clear the invaders and maintain sperm motility, but excessive oxidative stress will induce host damage. Additionally, oxidative stress is always accompanied by autophagy which can also help maintain host homeostasis. Male reproductive system homeostasis disequilibrium can cause inflammation of the genitourinary system, influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of oxidative stress and autophagy on bacterial infection in the male reproductive system, and we also explore the crosslink between oxidative stress and autophagy during this process.


2015 ◽  
Vol 101 ◽  
pp. 86-93 ◽  
Author(s):  
D. Bravo ◽  
C.J. Maturana ◽  
T. Pelissier ◽  
A. Hernández ◽  
L. Constandil

2010 ◽  
Vol 30 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Keira Melican ◽  
Jorrit Boekel ◽  
Monica Ryden-Aulin ◽  
Agneta Richter-Dahlfors

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aubrey N. Michi ◽  
Bryan G. Yipp ◽  
Antoine Dufour ◽  
Fernando Lopes ◽  
David Proud

AbstractHuman rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function. We observe that early HRV-C15 infection induces a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induces ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1α regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.


2012 ◽  
Vol 32 (34) ◽  
pp. 11559-11573 ◽  
Author(s):  
C. Rigato ◽  
N. Swinnen ◽  
R. Buckinx ◽  
I. Couillin ◽  
J.-M. Mangin ◽  
...  

2015 ◽  
Vol 90 (6) ◽  
pp. 2928-2937 ◽  
Author(s):  
Ai-Ping Jiang ◽  
Jin-Feng Jiang ◽  
Ji-Fu Wei ◽  
Ming-Gao Guo ◽  
Yan Qin ◽  
...  

ABSTRACTThe gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viraltrans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection.IMPORTANCEIn this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1trans-infection of CD4+T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.


2021 ◽  
Vol 22 (11) ◽  
pp. 5978
Author(s):  
Hiroyuki Inoue ◽  
Hidetaka Kuroda ◽  
Wataru Ofusa ◽  
Sadao Oyama ◽  
Maki Kimura ◽  
...  

The ionotropic P2X receptor, P2X7, is believed to regulate and/or generate nociceptive pain, and pain in several neuropathological diseases. Although there is a known relationship between P2X7 receptor activity and pain sensing, its detailed functional properties in trigeminal ganglion (TG) neurons remains unclear. We examined the electrophysiological and pharmacological characteristics of the P2X7 receptor and its functional coupling with other P2X receptors and pannexin-1 (PANX1) channels in primary cultured rat TG neurons, using whole-cell patch-clamp recordings. Application of ATP and Bz-ATP induced long-lasting biphasic inward currents that were more sensitive to extracellular Bz-ATP than ATP, indicating that the current was carried by P2X7 receptors. While the biphasic current densities of the first and second components were increased by Bz-ATP in a concentration dependent manner; current duration was only affected in the second component. These currents were significantly inhibited by P2X7 receptor antagonists, while only the second component was inhibited by P2X1, 3, and 4 receptor antagonists, PANX1 channel inhibitors, and extracellular ATPase. Taken together, our data suggests that autocrine or paracrine signaling via the P2X7-PANX1-P2X receptor/channel complex may play important roles in several pain sensing pathways via long-lasting neuronal activity driven by extracellular high-concentration ATP following tissue damage in the orofacial area.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria Janeh ◽  
Dani Osman ◽  
Zakaria Kambris

Abstract Mosquitoes acquire the pathogens they transmit through ingestion, and the insects’ gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ziwei Xu ◽  
Zi-mo Chen ◽  
Xiaoyan Wu ◽  
Linjie Zhang ◽  
Ying Cao ◽  
...  

The NLRP3 inflammasome is a core component of innate immunity, and dysregulation of NLRP3 inflammasome involves developing autoimmune, metabolic, and neurodegenerative diseases. Potassium efflux has been reported to be essential for NLRP3 inflammasome activation by structurally diverse pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Thus, the molecular mechanisms underlying potassium efflux to activate NLRP3 inflammasome are under extensive investigation. Here, we review current knowledge about the distinction channels or pore-forming proteins underlying potassium efflux for NLRP3 inflammasome activation with canonical/non-canonical signaling or following caspase-8 induced pyroptosis. Ion channels and pore-forming proteins, including P2X7 receptor, Gasdermin D, pannexin-1, and K2P channels involved present viable therapeutic targets for NLRP3 inflammasome related diseases.


Sign in / Sign up

Export Citation Format

Share Document