scholarly journals Novel semi-decentralised mobile system for the sanitization and dehydration of septic sludge: a pilot-scale evaluation in the Jordan Valley

Author(s):  
Eva Kocbek ◽  
Hector A. Garcia ◽  
Christine M. Hooijmans ◽  
Ivan Mijatović ◽  
Mohammad Al-Addous ◽  
...  

AbstractThe provision of effective sanitation strategies has a significant impact on public health. However, the treatment of septic sludge still presents some challenges worldwide. Consequently, innovative technologies capable of an effective and efficient sludge treatment, mostly at a decentralized level, are in high demand to improve sanitation provision. To address this problem, this study evaluates a novel semi-decentralised mobile faecal sludge treatment system, the pilot-system for which consists of a combination of several individual processes including mechanical dewatering (MD), microwave (MW) drying, and membrane filtration (ultrafiltration [UF] and reverse osmosis [RO]). The system evaluation was carried out by treating raw, partially digested faecal sludge (FS) from septic tanks—hence, septic sludge (SS)—in the Jordan Valley, Jordan. The pilot-scale system exhibited an effective and flexible treatment performance for (i) sanitizing faecal sludge and related liquid streams (MW and UF); (ii) reducing the treated sludge mass (and sludge volume) (MD and MW); and (iii) producing a high-quality treated liquid stream ideal for water reclamation applications (UF and RO). The MD process removed approximately 99% of the initial SS water content. The MW drying system completely removed E. coli and dehydrated the dewatered sludge at low energy expenditures of 0.75 MJ kg−1 and 5.5 MJ kg−1, respectively. Such energy expenditures can be further reduced by approximately 40% by recovering energy in the condensate and burning the dried sludge, which can then be reused inland applications. The membrane filtration system (UF and RO) was able to produce high-quality treated water that is ideal for the water reuse applications that irrigation requires, as well as meeting the Jordanian standard 893/2006. In addition, the system can also be powered by renewable energy sources, such as photovoltaic energy. Therefore, this research demonstrates that the evaluated semi-decentralised mobile system is technically feasible for the in situ treatment of SS (sanitization and dehydration), while also being effective for simultaneously recovering valuable resources, such as energy, water, and nutrients.

2008 ◽  
Vol 57 (6) ◽  
pp. 909-914 ◽  
Author(s):  
A. Sperlich ◽  
X. Zheng ◽  
M. Jekel ◽  
M. Ernst

In a Sino-German research project, a sustainable water reclamation concept was developed for different applications of municipal water reuse at the Olympic Green 2008 in Beijing, China. Results from pilot-scale experiments in Beijing and Berlin show that selective nutrient removal by adsorption onto granular ferric hydroxide (GFH) after a membrane bioreactor (MBR) can maintain a total phosphorus concentration of <0.03 μg L−1 P, thus preventing eutrophication of artificial lakes. Operation time of GFH adsorption columns can be extended by regeneration using sodium hydroxide solution. A subsequent ultrafiltration (UF) membrane after bank filtration creates an additional barrier for pathogens and allows for further urban reuse applications such as toilet flushing. Short term bank / bio-filtration prior to UF is shown to effectively remove biopolymers and reduce membrane fouling.


2016 ◽  
Vol 74 (3) ◽  
pp. 586-594 ◽  
Author(s):  
Hussein I. Abdel-Shafy ◽  
Mohamed A. El-Khateeb ◽  
Mona S. M. Mansour

The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse.


2009 ◽  
Vol 60 (1) ◽  
pp. 251-259 ◽  
Author(s):  
C. Kazner ◽  
J. Meier ◽  
T. Wintgens ◽  
T. Melin

Direct capillary nanofiltration was tested for reclamation of tertiary effluent from a municipal wastewater treatment plant. This process can be regarded as a promising treatment alternative for high quality water reuse applications when combined with powdered activated carbon for enhanced removal of organic compounds. The nanofiltration was operated at flux levels between 20 and 25 L/(m2 h) at a transmembrane pressure difference of 2–3 bar for approximately 4,000 operating hours. The study was conducted with PAC doses in the range from 0 to 50 mg/L. The plant removal for DOC ranged from 88–98%. The sulfate retention of the membrane filtration process was between 87 and 96%. The process provided a consistently high permeate quality with respect to organic and inorganic key parameters.


2014 ◽  
Vol 77 (9) ◽  
pp. 1487-1494 ◽  
Author(s):  
ANNEMARIE L. BUCHHOLZ ◽  
GORDON R. DAVIDSON ◽  
BRADLEY P. MARKS ◽  
EWEN C. D. TODD ◽  
ELLIOT T. RYSER

Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7–contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein–labeled nontoxigenic E. coli O157:H7 cocktail at 106 CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (~22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize the buildup of residual product during processing.


2018 ◽  
Vol 19 (3) ◽  
pp. 855-863 ◽  
Author(s):  
T. Miyoshi ◽  
Y. Takahashi ◽  
T. Suzuki ◽  
R. Nitisoravut ◽  
C. Polprasert

Abstract This study investigated the performance of a hybrid membrane filtration system to produce industrial water from highly-colored surface water. The system consists of a membrane filtration process with appropriate pretreatments, including coagulation, pre-chlorination, and anion exchange (IE) process. The results of the pilot-scale experiments revealed that the hybrid system can produce treated water with color of around 5 Pt-Co, dissolved manganese concentration of no more than 0.05 mg/L, and a silt density index (SDI) of no more than 5 when sufficient coagulant and sodium hypochlorite were dosed. Although the IE process effectively reduced the color of the water, a moderate increase in the color of the IE effluent was observed when there was a significant increase in the color of the raw water. This resulted in a severe membrane fouling, which was likely to be attributed to the excess production of inorganic sludge associated with the increased coagulant dosage required to achieve sufficient reduction of color. Such severe membrane fouling can be controlled by optimising the backwashing and relaxation frequencies during the membrane filtration. These results indicate that the hybrid system proposed is a suitable technology for treating highly-colored surface water.


1997 ◽  
Vol 32 (3) ◽  
pp. 191-194
Author(s):  
V.A. Samoylenko ◽  
T.V. Yakshina ◽  
R.R. Oleynikov ◽  
Yu.G. Kostenko ◽  
D.N. Spicyna ◽  
...  

Author(s):  
Ilias Fountoulakis ◽  
Panagiotis Kosmopoulos ◽  
Kyriakoula Papachristopoulou ◽  
Panagiotis-Ioannis Raptis ◽  
Rodanthi-Elisavet Mamouri ◽  
...  

Cyprus plans to drastically increase the share of renewable energy sources from 13.9% in 2020 to 22.9% in 2030. Solar energy can play a key role in the effort to fulfil this goal. The potential for production of solar energy over the island is much higher than most of European territory because of the low latitude of the island and the nearly cloudless summers. In this study, high quality and fine resolution satellite retrievals of aerosols and dust, from the newly developed MIDAS climatology, as well as information for clouds from CMSAF are used in order to quantify the effects of aerosols, dust, and clouds on the levels of surface solar radiation (SSR) and the corresponding financial loss for different types of installations for production of solar energy. An SSR climatology has been also developed based on the above information. Ground-based measurements were also incorporated to study the contribution of different species to the aerosol mixture and the effects of day-to-day variability of aerosols on SSR. Aerosols attenuate 5 – 10% of annual GHI and 15 – 35% of annual DNI, while clouds attenuate ~25 – 30% and 35 – 50% respectively. Dust is responsible for 30 – 50% of the overall attenuation by aerosols.


2021 ◽  
Vol 3 ◽  
Author(s):  
Marc Sauchelli Toran ◽  
Patricia Fernández Labrador ◽  
Juan Francisco Ciriza ◽  
Yeray Asensio ◽  
André Reigersman ◽  
...  

Water reuse is a safe and often the least energy-intensive method of providing water from non-conventional sources in water stressed regions. Although public perception can be a challenge, water reuse is gaining acceptance. Recent advances in membrane technology allow for reclamation of wastewater through the production of high-quality treated water, including potable reuse. This study takes an in-depth evaluation of a combination of membrane-based tertiary processes for its application in reuse of brewery wastewater, and is one of the few studies that evaluates long-term membrane performance at the pilot-scale. Two different advanced tertiary treatment trains were tested with secondary wastewater from a brewery wastewater treatment plant (A) ultrafiltration (UF) and reverse osmosis (RO), and (B) ozonation, coagulation, microfiltration with ceramic membranes (MF) and RO. Three specific criteria were used for membrane comparison: 1) pilot plant optimisation to identify ideal operating conditions, 2) Clean-In-Place (CIP) procedures to restore permeability, and 3) final water quality obtained. Both UF and Micro-Filtration membranes were operated at increasing fluxes, filtration intervals and alternating phases of backwash (BW) and chemically enhanced backwash (CEB) to control fouling. Operation of polymeric UF membranes was optimized at a flux of 25–30 LMH with 15–20 min of filtration time to obtain longer production periods and avoid frequent CIP membrane cleaning procedures. Combination of ozone and coagulation with ceramic MF membranes resulted in high flux values up to 120 LMH with CEB:BW ratios of 1:4 to 1:10. Coagulation doses of 3–6 ppm were required to deal with the high concentrations of polyphenols (coagulation inhibitors) in the feed, but higher concentrations led to increasing fouling resistance of the MF membrane. Varying the ozone concentration stepwise from 0 to 25 mg/L had no noticeable effect on coagulation. The most effective cleaning strategy was found to be a combination of 2000 mg/L NaOCl followed by 5% HCl which enabled to recover permeability up to 400 LMH·bar−1. Both polymeric UF and ceramic MF membranes produced effluents that fulfil the limits of the national regulatory framework for reuse in industrial services (RD 1620/2007). Coupling to the RO units in both tertiary trains led to further water polishing and an improved treated water quality.


Author(s):  
Haruka Takeuchi ◽  
Naoyuki Yamashita ◽  
Norihide Nakada ◽  
Hiroaki Tanaka

This study investigated the removal characteristics of N-Nitrosamines and their precursors at three pilot-scale water reclamation plants. These plants applies different integrated membrane systems: (1) microfiltration (MF)/nanofiltration (NF)/reverse osmosis (RO) membrane; (2) sand filtration/three-stage RO; and (3) ultrafiltration (UF)/NF and UF/RO. Variable removal of N-Nitrosodimethylamine (NDMA) by the RO processes could be attributed to membrane fouling and the feed water temperature. The effect of membrane fouling on N-Nitrosamine removal was extensively evaluated at one of the plants by conducting one month of operation and chemical cleaning of the RO element. Membrane fouling enhanced N-Nitrosamine removal by the pilot-scale RO process. This finding contributes to better understanding of the variable removal of NDMA by RO processes. This study also investigated the removal characteristics of N-Nitrosamine precursors. The NF and RO processes greatly reduced NDMA formation potential (FP), but the UF process had little effect. The contributions of MF, NF, and RO processes for reducing FPs of NDMA, N-Nitrosopyrrolidine and N-Nitrosodiethylamine were different, suggesting different size distributions of their precursors.


2018 ◽  
Vol 53 (3) ◽  
pp. 133-142 ◽  
Author(s):  
H. T. T. Dang ◽  
H. D. Tran ◽  
S. H. Tran ◽  
M. Sasakawa ◽  
R. M. Narbaitz

Abstract Due to stringent local regulations and adverse environmental impacts, Vietnamese coal mining industries are under pressure to reuse the large volume of wastewater they produce. To this end, the aim of this study was to add microfiltration (MF) membranes after the conventional Vietnamese coalmine wastewater treatment systems (coagulation/sedimentation/filtration) to assess the feasibility of effluent reuse. The pilot-scale test was performed at a coalmine plant located in Quang Ninh province, Vietnam. Results indicate that precipitation with slaked lime (Ca(OH)2) and polyaluminum chloride (PACl) followed by sand filtration are important pre-treatment steps, prior to microfiltration. To achieve high Mn removals the sand in the filter had to be replaced by a KMnO4 coated sand. The MF membrane produced a stable and high quality effluent that meets the Vietnamese National Technical Regulations for Drinking Water quality (Fe < 0.5 mg/L, Mn < 0.3 mg/L, hardness <350 mg/L as CaCO3). Complete membrane recovery was achieved by sequential 24 h soakings in NaOCl, citric acid and a surfactant.


Sign in / Sign up

Export Citation Format

Share Document