scholarly journals Effect of Nitriding Potential KN on the Formation and Growth of a “White Layer” on Iron Aluminide Alloy

Author(s):  
Ngoc Minh Le ◽  
Christian Schimpf ◽  
Horst Biermann ◽  
Anke Dalke

AbstractThis paper investigates the effect of nitriding potential under well-defined gas nitriding conditions on the formation and growth of a compound layer called “white layer” on a FeAl40 (with the composition of 40 at. pct Al) iron aluminide alloy. The nitriding potential was systematically varied in the range of 0.1 to 1.75 bar−1/2 at 590 °C for 5 hour nitriding time with an ammonia-hydrogen-nitrogen atmosphere. Characterization of the microstructure and phases formed within the white layer was performed using optical and scanning electron microscopy, X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and glow discharge optical emission spectroscopy (GDOES). Experimental results indicated that the nitriding potential strongly influences morphology and crystal structure of the white layer. The nitride compound layer consists of the phases γ′-Fe4N, ε-Fe2-3N, and AlN. A mechanism is proposed for the formation and growth of the white layer, depending on the effect of the nitriding potential.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Ki-Hong Kim ◽  
Won-Beom Lee ◽  
Tae-Hwan Kim ◽  
Seok-Won Son

Potential-controlled nitriding is an effective technique for enhancing the life of steel molds and dies by improving their surface hardness and toughness against fatigue damage. In this study, the effect of the nitriding potential on the microstructure and fracture toughness of nitrided AISI D2 steels was investigated. The nitrided layers were characterized by microhardness measurements, optical microscopy, and scanning electron microscopy, and their phases were identified by X-ray and electron backscatter diffraction. As the nitriding potential increased to 2.0 atm−1/2, an increase in the surface hardness and fracture toughness was observed with the growth of the compound layer. However, both the surface hardness and the fracture toughness decreased at the higher nitriding potential of 5.0 atm−1/2 owing to the increased porosity in the compound layers, which mainly consist of the ε (Fe2–3N) phase. Additionally, by observing crack growth behavior, the fracture toughness was analyzed considering the material characteristics of the diffusion and compound layers. The fracture toughness was influenced by the location of the initial Palmqvist cracks due to the localized plastic deformation of the diffusion layer and increased crack length due to the porous compound layer.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


2018 ◽  
Vol 83 (4) ◽  
pp. 523-530 ◽  
Author(s):  
Victor V. Subbotin ◽  
Anna Vymazalová ◽  
František Laufek ◽  
Yevgeny E. Savchenko ◽  
Chris J. Stanley ◽  
...  

AbstractMitrofanovite, Pt3Te4, is a new telluride discovered in low-sulfide disseminated ore in the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. It forms anhedral grains (up to ~20 μm × 50 μm) commonly in intergrowths with moncheite in aggregates with lukkulaisvaaraite, kotulskite, vysotskite, braggite, keithconnite, rustenburgite and Pt–Fe alloys hosted by a chalcopyrite–pentlandite–pyrrhotite matrix. Associated silicates are: orthopyroxene, augite, olivine, amphiboles and plagioclase. Mitrofanovite is brittle; it has a metallic lustre and a grey streak. Mitrofanovite has a good cleavage, along {001}. In plane-polarised light, mitrofanovite is bright white with medium to strong bireflectance, slight pleochroism, and strong anisotropy on non-basal sections with greyish brown rotation tints; it exhibits no internal reflections. Reflectance values for the synthetic analogue of mitrofanovite in air (Ro, Re’ in %) are: 58.4, 54.6 at 470 nm; 62.7, 58.0 at 546 nm; 63.4, 59.1 at 589 nm; and 63.6, 59.5 at 650 nm. Fifteen electron-microprobe analyses of mitrofanovite gave an average composition: Pt 52.08, Pd 0.19, Te 47.08 and Bi 0.91, total 100.27 wt.%, corresponding to the formula (Pt2.91Pd0.02)Σ2.93(Te4.02Bi0.05)Σ4.07 based on 7 atoms; the average of eleven analyses on synthetic analogue is: Pt 52.57 and Te 47.45, total 100.02 wt.%, corresponding to Pt2.94Te4.06. The density, calculated on the basis of the formula, is 11.18 g/cm3. The mineral is trigonal, space group R$\overline 3 $m, with a = 3.9874(1), c = 35.361(1) Å, V = 486.91(2) Å3 and Z = 3. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Pt3Te4. Mitrofanovite is structurally and chemically related to moncheite (PtTe2). The strongest lines in the powder X-ray diffraction pattern of synthetic mitrofanovite [d in Å (I) (hkl)] are: 11.790(23)(003), 5.891(100)(006), 2.851(26)(107), 2.137(16)(1013), 2.039(18)(0114), 1.574(24)(0120), 1.3098(21)(0027). The structural identity of natural mitrofanovite with synthetic Pt3Te4 was confirmed by electron backscatter diffraction measurements on the natural sample. The mineral name is chosen to honour Felix P. Mitrofanov, a Russian geologist who was among the first to discover platinum-group element mineralisation in the Fedorova–Pana complex.


2010 ◽  
Vol 89-91 ◽  
pp. 371-376
Author(s):  
S. Meka ◽  
R.E. Schacherl ◽  
E. Bischoff ◽  
Eric J. Mittemeijer

Employing NH3/H2 gas mixtures, Fe-4.65at% Al alloy specimens were nitrided to assess how the presence of Al, originally dissolved in the ferrite matrix, influences the development of γ-Fe4N1-x phase in the surface adjacent region. The nitrided specimens were characterized by light microscopy, X-ray diffraction, Electron Backscatter Diffraction and Electron Probe Micro Analysis. Surprisingly, formation of ε-Fe2N1-x was observed, although, for the applied nitriding parameters (nitriding potential and temperature), only the formation of γ-Fe4N1-x would be expected in case of nitriding pure ferrite. An unusual plate-type morphology of γ-Fe4N1-x was observed, contrasting with the usual continuous layer-type growth observed upon nitriding iron, Fe-Cr and Fe-V alloys. These unexpected phenomena may be explained as consequences of the need to realize a very high nitrogen supersaturation in the ferrite matrix in order to initiate the precipitation of AlN.


2009 ◽  
Vol 615-617 ◽  
pp. 15-18 ◽  
Author(s):  
Emil Tymicki ◽  
Krzysztof Grasza ◽  
Katarzyna Racka ◽  
Marcin Raczkiewicz ◽  
Tadeusz Łukasiewicz ◽  
...  

4H-SiC single crystals grown by the seeded physical vapour transport method have been investigated. These crystals were grown on 6H-SiC seeds. The influence of the seed temperature, form and granulation of SiC source materials on the stability and efficiency of the 4H polytype growth have been investigated. A new way of the seed mounting - with an open backside - has been used. Crystals obtained were free of structural defects in the form of hexagonal voids. The crystalline structure of SiC crystals was investigated by EBSD (Electron Backscatter Diffraction) and X-Ray diffraction methods. Moreover, defects in crystals and wafers cut from these crystals were examined by optical, scanning electron and atomic force microscopy combined with KOH etching.


2021 ◽  
Vol 1016 ◽  
pp. 762-767
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański

The temperature-dependent mechanical stability of retained austenite in medium-Mn transformation induced plasticity 0.17C-3.3Mn-1.6Al-1.7Al-0.22Si-0.23Mo thermomechanically processed steel was investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) methods. Specimens were deformed up to rupture in static tensile tests in a temperature range 20–200°C. It was found that deformation temperature affects significantly the intensity of TRIP effect. In case of specimens deformed at temperatures higher than 60°C, a gradual temperature-related decrease in the stability of γ phase was noted. It indicates a progressive decrease of the significance of the TRIP effect and at the same time the growing importance of the thermally activated processes affecting a thermal stability of retained austenite.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Jialin Zhu ◽  
Chao Deng ◽  
Yahui Liu ◽  
Nan Lin ◽  
Shifeng Liu

One hundred and thirty-five degree clock rolling significantly improves the texture homogeneity of tantalum sheets along the thickness, but a distinctly fragmented substructure is formed within {111} (<111>//normal direction (ND)) and {100} (<100>//ND) deformation grains, which is not suitable to obtain a uniform recrystallization microstructure. Thus, effects of different annealing temperatures on the microstructure and texture heterogeneity of tantalum sheets along the thickness were investigated by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the texture distribution along θ-fiber and γ-fiber is irregular and many large grains with {111} orientation develop during annealing at high temperature. However, low-temperature annealing can not only weaken the texture intensity in the surface and the center layer but also introduce a more uniform grain size distribution. This result can be attributed to the subgrain-nucleation-dominated recrystallization mechanism induced by recovery at low temperature, and moreover, a considerable decline of recrystallization driving force resulting from the release of stored energy in the deformation matrix.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 406
Author(s):  
Samiha Saad ◽  
Zakaria Boumerzoug ◽  
Anne Laure Helbert ◽  
François Brisset ◽  
Thierry Baudin

The objective of this work is to study, on a copper wire, the effect of TiO2-nanoparticles on electrodeposited nickel. Both the microstructure and surface morphology (texture) of the coating were investigated. This deposit is obtained from baths of sulfated electroplating Watts. The Ni-TO2 composite coating is deposited at a temperature of 45 °C. The composite deposit is prepared by adding nanoparticles of TiO2 to the electrolyte. The characterization has been carried out by X-ray diffraction, scanning electron microscopy, microhardness measurements, and electron backscatter diffraction (EBSD). Vickers microhardness was used to characterize the mechanical properties of the electrodeposited nickel. The results showed the effects of the TiO2 on the composition, the surface morphology, and the hardness of the deposited layer. However, there was not an effect of TiO2 nanoparticles on texture.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4268
Author(s):  
Věra Vodičková ◽  
Martin Švec ◽  
Pavel Hanus ◽  
Pavel Novák ◽  
Antonín Záděra ◽  
...  

The effect of phase composition and morphology on high-temperature strength in the compression of Fe-Al-Si-based iron aluminides manufactured by casting was investigated. The structure and high-temperature strength in the compression of three alloys—Fe28Al5Si, Fe28Al5Si2Mo, and Fe28Al5Si2Ti—were studied. Long-term (at 800 °C for 100 h) annealing was performed for the achievement of structural stability. The phase composition and grain size of alloys were primarily described by means of scanning electron microscopy equipped with energy dispersive analysis and Electron Backscatter Diffraction (EBSD). The phase composition was verified by X-ray diffraction (XRD) analysis. The effect of Mo and Ti addition as well as the effect of long-term annealing on high-temperature yield stress in compression were investigated. Both additives—Mo and Ti—affected the yield stress values positively. Long-term annealing of Fe28Al5Si-X iron aluminide alloyed with Mo and Ti deteriorates yield stress values slightly due to grain coarsening.


Sign in / Sign up

Export Citation Format

Share Document