scholarly journals On the 3-D Shape of Interlaced Regions in Sn-3Ag-0.5Cu Solder Balls

Author(s):  
A. A. Daszki ◽  
C. M. Gourlay

Abstract The microstructure of Sn-Ag-Cu (SAC) solder joints plays an important role in the reliability of electronics, and interlaced twinning has been linked with improved performance. Here, we study the three-dimensional (3-D) shape of interlaced regions in Sn-3.0Ag-0.5Cu (SAC305) solder balls by combining serial sectioning with electron backscatter diffraction. In solder balls without large Ag3Sn plates, we show that the interlaced volume can be reasonably approximated as a hollow double cone with the common 〈100〉 twinning axis as the cone axis, and the 〈110〉 from all three twinned orientations making up the cone sides. This 3-D morphology can explain a range of partially interlaced morphologies in past work on 2-D cross-sections.

Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2013 ◽  
Vol 46 (4) ◽  
pp. 1145-1150 ◽  
Author(s):  
Melanie Syha ◽  
Andreas Trenkle ◽  
Barbara Lödermann ◽  
Andreas Graff ◽  
Wolfgang Ludwig ◽  
...  

Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques.


2019 ◽  
Vol 37 (5) ◽  
pp. 469-481 ◽  
Author(s):  
Visweswara C. Gudla ◽  
Alistair Garner ◽  
Malte Storm ◽  
Parmesh Gajjar ◽  
James Carr ◽  
...  

AbstractEnvironmentally induced cracking (EIC) in a sensitized high-strength AA5083 H131 alloy has been investigated using time-lapse synchrotron X-ray computed tomography combined with post-mortem correlative characterization. Small corrosion features deliberately introduced in a pre-exposure step were found to be the site of initiation for over 95% of the 44 EIC cracks that developed under slow strain rate testing. Detailed analysis using three-dimensional electron backscatter diffraction and energy-dispersive spectroscopy analysis of a single crack confirmed the intergranular nature of the cracks from the start and that the pre-exposure corrosion was associated with an α-AlFeMnSi particle cluster. It also appears that several cracks may have initiated at this site, which later coalesced to form the 300-μm-long crack that ultimately developed. Of further note is the fact that initiation of the EIC cracks across the sample started below the yield strength and continued beyond the ultimate tensile strength. The most rapid crack propagation occurred during sample extension following a period of fixed displacement.


2019 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Yu.V. Yudin ◽  
A.A. Kuklina ◽  
M.V. Maisuradze ◽  
M.S. Karabanalov

The electron backscatter diffraction method (EBSD) is widely used to studycrystallographic orientational relationships of the steel microstructure constituentsincluding bainite. Nevertheless the fine structure of bainite (subunits, plates) is notinvestigated by this method. In this paper we propose a technique for visualizing ofthe structure of a bainitic steel near-surface layer using the values of Euler anglesobtained by EBSD method. A three-dimensional picture of the bainite fine structure ofthe HY-TUF steel obtained by the proposed technique is in


2018 ◽  
Vol 51 (4) ◽  
pp. 1125-1132 ◽  
Author(s):  
Z. B. Zhao ◽  
Q. J. Wang ◽  
H. Wang ◽  
J. R. Liu ◽  
R. Yang

The relationship between the crystallographic orientation and habit plane normal of transformed α laths in titanium alloys is discussed according to the Burgers orientation relationship and the three-dimensional structure of the α lath. A new method (orientation–trace method) is developed to determine the orientation of the parent β phase using the orientation of the α lath, which was measured by electron backscatter diffraction, and the microstructural morphology of that α variant. This approach is validated in a near-α titanium alloy. Moreover, the habit plane normal direction of the transformed α lath can be obtained from the crystallographic orientations of the α lath itself and its parent β grain. The verification and the corresponding discussion show the reliability of this approach.


2009 ◽  
Vol 42 (2) ◽  
pp. 234-241 ◽  
Author(s):  
David J. Dingley ◽  
Stuart I. Wright

Electron backscatter diffraction (EBSD) is a scanning electron microscope-based technique principally used for the determination and mapping of crystal orientation. This work describes an adaptation of the EBSD technique into a potential tool for crystal phase determination. The process can be distilled into three steps: (1) extracting a triclinic cell from a single EBSD pattern, (2) identifying the crystal symmetry from an examination of the triclinic cell, and (3) determining the lattice parameters. The triclinic cell is determined by finding the bands passing through two zone axes in the pattern including a band connecting the two. A three-dimensional triclinic unit cell is constructed based on the identified bands. The EBSD pattern is indexed in terms of the triclinic cell thus formed and the crystal orientation calculated. The pattern indexing results in independent multiple orientations due to the symmetry the crystal actually possesses. By examining the relationships between these multiple orientations, the crystal system is established. By comparing simulated Kikuchi bands with the pattern the lattice parameters can be determined. Details of the method are given for a test case of EBSD patterns obtained from the hexagonal phase of titanium.


2009 ◽  
Vol 15 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Alberto Pérez-Huerta ◽  
Maggie Cusack

AbstractElectron backscatter diffraction (EBSD) is becoming a widely used technique to determine crystallographic orientation in biogenic carbonates. Despite this use, there is little information available on preparation for the analysis of biogenic carbonates. EBSD data are compared for biogenic aragonite and calcite in the common blue mussel, Mytilus edulis, using different types of resin and thicknesses of carbon coating. Results indicate that carbonate biomineral samples provide better EBSD results if they are embedded in resin, particularly epoxy resin. A uniform layer of carbon of 2.5 nm thickness provides sufficient conductivity for EBSD analyses of such insulators to avoid charging without masking the diffracted signal. Diffraction intensity decreases with carbon coating thickness of 5 nm or more. This study demonstrates the importance of optimizing sample preparation for EBSD analyses of insulators such as carbonate biominerals.


2008 ◽  
Vol 41 (2) ◽  
pp. 310-318 ◽  
Author(s):  
Greg Johnson ◽  
Andrew King ◽  
Marcelo Goncalves Honnicke ◽  
J. Marrow ◽  
Wolfgang Ludwig

By simultaneous acquisition of the transmitted and the diffracted beams, the applicability of the previously introduced diffraction contrast tomography technique [Ludwig, Schmidt, Lauridsen & Poulsen (2008).J. Appl. Cryst.41, 302–309] can be extended to the case of undeformed polycrystalline samples containing more than 100 grains per cross section. The grains are still imaged using the occasionally occurring diffraction contribution to the X-ray attenuation coefficient, which can be observed as a reduction in the intensity of the transmitted beam when a grain fulfils the diffraction condition. Automating the segmentation of the extinction spot images is possible with the additional diffracted beam information, even in the presence of significant spot overlap. By pairing the corresponding direct (`extinction') and diffracted beam spots a robust sorting and indexing approach has been implemented. The analysis procedure is illustrated on a real data set and the result is validated by comparison with a two-dimensional grain map obtained by electron backscatter diffraction.


Author(s):  
Adam Ståhlkrantz ◽  
Peter Hedström ◽  
Niklas Sarius ◽  
Annika Borgenstam

AbstractThe microstructure of a low alloy medium carbon bainitic steel, austempered in the temperature range 275 °C to 450 °C has been investigated by detailed electron backscatter diffraction and variant pairing analysis. It is observed that the variant pairing tendency has two distinct changes with varying temperature. At low temperature V1-V6 is the most frequent, whereas V1-V2 is the most frequent at intermediate temperature and at the highest temperature, V1-V4 dominates. This is distinct from the literature on low carbon steel where only two dominant variants pairs, related to the common distinction of bainite into lower and upper bainite, are typically reported. The change of the variant pairing in bainite also has many similarities with the change of variant pairing in martensite when its carbon content changes. Another observation is that the morphological orientation of cementite in the bainite has a strong relation with the variant pairing at lower austempering temperatures.


Sign in / Sign up

Export Citation Format

Share Document