Mechanical properties and tribological behavior of a cast heat-resisting copper based alloy

2002 ◽  
Vol 9 (4) ◽  
pp. 235-239 ◽  
Author(s):  
Wei-wen Zhang ◽  
Wei Xia ◽  
Li-ping Wen ◽  
Yuan-biao Wu ◽  
Guo-ru Pan
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Alexander Mironov ◽  
Iosif Gershman ◽  
Eugeniy Gershman ◽  
Pavel Podrabinnik ◽  
Ekaterina Kuznetsova ◽  
...  

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2007 ◽  
Vol 26-28 ◽  
pp. 715-718
Author(s):  
Bong Hwan Kim ◽  
Sang Mok Lee

Al-Cu-Fe-B quasicrystalline and Mo coatings were obtained on the mild steel and brass substrates by thermal spraying routes for the purpose of replacement of Mo coatings with quasicrystalline ones. Quasicrystalline coatings were prepared by air plasma spraying and/or HVOF (High Velocity Oxygen Fuel) techniques followed by subsequent heat treatment, and Mo coatings, wire flame spraying. For comparative studies of important properties for industrial application, mechanical properties, bonding strength, surface energy, and tribological behavior were investigated based on microstructural characterization. Basic mechanical properties such as hardness, fracture toughness, and elastic modulus of quasicrystalline coating showed comparable values with those of Mo coatings. De-bonding tests of coatings deposited onto brass substrate indicated that the bonding strength of quasicrystalline coatings obtained by HVOF techniques exhibit higher value to Mo coatings. Non-sticking property analogized from surface energy calculation and friction coefficient of quasicrystalline coatings also showed better performance during the tests. It is suggested from this investigation that the quasicrystalline coating can be effectively used as a replacement of the Mo coating, which has shown a recent steep price rise and problems of accidental existence of minor environment harmful elements such as Cr6+, Pb, Cd, and Hg.


2019 ◽  
Vol 16 (31) ◽  
pp. 860-874
Author(s):  
Jacson Malcher NASCIMENTO ◽  
Regiane Socorro BARROS ◽  
Camila Yuri KONNO ◽  
Adrina Paixão SILVA ◽  
Otávio ROCHA ◽  
...  

In general, the binary monotectic alloys are characterized by the limited solubility in the liquid state, which gives them a benefited tribological behavior such as wear resistance. Researches regarding the development of monotectic alloy microstructures during the unsteady-state heat flow conditions are fundamental, as it encompasses most of the solidification industrial processes. However, the microstructural relationship between the mechanical properties of monotectic alloys is little explored and practically nil. In this context, the present study consists of investigating and correlating solidification thermal variables and structural parameters such as microhardness and machinability (cutting temperatures and tool wear) of Al-1.2wt% Pb alloy, in a horizontal directional device. It was observed that the cutting temperature and tool wear results complement each other when correlated with position and interphase spacing, indicating that for smaller interphase spacings the addition of lead harms machinability.


2014 ◽  
Vol 11 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Igor Danilenko ◽  
Serhii Prokhorenko ◽  
Tetyana Konstantinova ◽  
Leonid Ahkozov ◽  
Valerii Burkhovetski ◽  
...  

The use of ceramic instead of metallic parts in devices that operate in aggressive conditions increases the service life of machines and equipment for chemical, metallurgical and other industries. The wear resistant zirconia/alumina composites were sintered from nanopowders obtained by co-precipitation technique. In the case of addition of 1wt% of alumina in zirconia ceramics the wear resistance increased by approximately 30%.The formation of complex multilevel composite structures, such as Al3+ ion segregation on zirconia grain boundaries and intracrystalline alumina inclusions in zirconia grains, increased the fracture toughness values of composites obtained from co-precipitated nanopowders and consequently decreased the volume loss of ceramic material.In this study, we investigated the effect of nanopowders synthesis methods and alumina concentration on composite structure, fracture toughness and tribological behavior of 3Y-TZP/alumina ceramic composites and searched correlation between structures and mechanical properties.


Vacuum ◽  
2020 ◽  
Vol 179 ◽  
pp. 109518 ◽  
Author(s):  
Changhong Cai ◽  
Renbo Song ◽  
Shiguang Peng ◽  
Yongjin Wang ◽  
Jingyuan Li

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Elizabeth Feeney ◽  
Devis Galesso ◽  
Cynthia Secchieri ◽  
Francesca Oliviero ◽  
Roberta Ramonda ◽  
...  

Abstract Inferior synovial lubrication is a hallmark of osteoarthritis (OA), and synovial fluid (SF) lubrication and composition are variable among OA patients. Hyaluronic acid (HA) viscosupplementation is a widely used therapy for improving SF viscoelasticity and lubrication, but it is unclear how the effectiveness of HA viscosupplements varies with arthritic endotype. The objective of this study was to investigate the effects of the HA viscosupplement, Hymovis®, on the lubricating properties of diseased SF from patients with noninflammatory OA and inflammatory arthritis (IA). The composition (cytokine, HA, and lubricin concentrations) of the SF was measured as well as the mechanical properties (rheology, tribology) of the SF alone and in a 1:1 mixture with the HA viscosupplement. Using rotational rheometry, no difference in SF viscosity was detected between disease types, and the addition of HA significantly increased all fluids' viscosities. In noninflammatory OA SF, friction coefficients followed a typical Stribeck pattern, and their magnitude was decreased by the addition of HA. While some of the IA SF also showed typical Stribeck behavior, a subset showed more erratic behavior with highly variable and larger friction coefficients. Interestingly, this aberrant behavior was not eliminated by the addition of HA, and it was associated with low concentrations of lubricin. Aberrant SF exhibited significantly lower effective viscosities compared to noninflammatory OA and IA SF with typical tribological behavior. Collectively, these results suggest that different endotypes of arthritis exist with respect to lubrication, which may impact the effectiveness of HA viscosupplements in reducing friction.


Sign in / Sign up

Export Citation Format

Share Document