scholarly journals Do Systemic Infections Contribute to the Pathogenesis of Dementia?

Author(s):  
Keenan Sterling ◽  
Mengen Xing ◽  
Weihong Song
Keyword(s):  
2019 ◽  
Vol 19 (28) ◽  
pp. 2554-2566 ◽  
Author(s):  
Aurelio Ortiz ◽  
Estibaliz Sansinenea

Background:: Candida species are in various parts of the human body as commensals. However, they can cause local mucosal infections and, sometimes, systemic infections in which Candida species can spread to all major organs and colonize them. Objective:: For the effective treatment of the mucosal infections and systemic life-threatening fungal diseases, a considerably large number of antifungal drugs have been developed and used for clinical purposes that comprise agents from four main drug classes: the polyenes, azoles, echinocandins, and antimetabolites. Method: : The synthesis of some of these drugs is available, allowing synthetic modification of the molecules to improve the biological activity against Candida species. The synthetic methodology for each compound is reviewed. Results: : The use of these compounds has caused a high-level resistance against these drugs, and therefore, new antifungal substances have been described in the last years. The organic synthesis of the known and new compounds is reported. Conclusion: : This article summarizes the chemistry of the existing agents, both the old drugs and new drugs, in the treatment of infections due to C. albicans, including the synthesis of the existing drugs.


Author(s):  
Flaminia Bardanzellu ◽  
Alessandra Reali ◽  
Maria Antonietta Marcialis ◽  
Vassilios Fanos

Introduction: Breast Milk (BM), containing nutrients and bioactive components, represents the best source for neonatal nutrition and determines short- and long- term benefits. Human milk oligosaccharides (HMOs) play an active role in these pathophysiological mechanisms. In fact; they influence the shaping of breastfed infant’s gut microbiota, promote intestinal development, confer protection against intestinal or systemic infections modulating immune system; moreover, HMOs determine extra-intestinal effects on several target organs, i.e reducing necrotizing enterocolitis rate or improving brain development. Aims: In this review, we analyze the great inter- and intra-individual variability of BM HMOs, investigating maternal, genetic and environmental factors modulating their composition. Moreover, we provide an update regarding HMOs’ unique properties, underlining their complex interaction with intestinal microbiota and host-derived metabolites. The possible HMOs’ influence on extra-intestinal bacterial communities, potentially influencing newborns’ and even lactating mothers’ health, have been hypothesized. Finally, recognized HMOs’ crucial role, we underline the promising opportunities showed by their addition in formula milk, useful to create dairy products more similar to maternal milk itself.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Danqun Jin ◽  
Huan Ye ◽  
Youfeng Liang

Abstract Background Community-acquired infections of Pseudomonas aeruginosa (P. aeruginosa) occur very rarely. Case presentation P. aeruginos was detected in cultures of venous blood and peritoneal exudate of a newborn with 58 perforations in the small intestine. Intravenous administration of imipenem cilastratin sodium and emergency abdominal surgery were performed. The patient fully recovered and was discharged 17 days after the operation. Conclusions Mild symptoms of systemic infections in newborns may delay the diagnosis. Early detection and timely treatment are the key to improved prognosis.


Author(s):  
Jordi Rello ◽  
Sofia Tejada ◽  
Laura Campogiani ◽  
Adenike G. Adebanjo ◽  
Antonella Tammaro

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leonardos Mageiros ◽  
Guillaume Méric ◽  
Sion C. Bayliss ◽  
Johan Pensar ◽  
Ben Pascoe ◽  
...  

AbstractChickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.


2020 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Somanon Bhattacharya ◽  
Tejas Bouklas ◽  
Bettina C. Fries

Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoping Ma ◽  
Jing Hu ◽  
Yan Yu ◽  
Chengdong Wang ◽  
Yu Gu ◽  
...  

AbstractCladosporium cladosporioides causes asthma and superficial and deep infections, mostly in immunodeficient individuals and animals. This study aimed to investigate whether C. cladosporioides spores can enter the lungs through pulmonary circulation and influence pulmonary immune response. We intravenously injected mice with C. cladosporioides spore suspension and conducted several assays on the lungs. Pulmonary hemorrhage symptoms and congestion were most severe on days 1, 2, and 3 post-inoculation (PI). Extensive inflammatory cell infiltration occurred throughout the period of infection. More spores and hyphae colonizing the lungs were detected on days 1, 2, and 3 PI, and fewer spores and hyphae were observed within 21 d of infection. Numerous macrophages, dendritic cells, and neutrophils were observed on day 5 PI, along with upregulation of CD54, an intercellular adhesion molecule. Th1 and Th2 cells increased after infection; specifically, Th2 cells increased considerably on day 5 PI. These results suggest that days 2 and 5 PI represent the inflammatory peak in the lungs and that the Th2 and Th1 signaling pathways are potentially involved in pulmonary immune responses. In conclusion, the further adaptive immune responses played important roles in establishing effective pulmonary immunity against C. cladosporioides systemic infections based on innate immune responses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Christina A. Rostad ◽  
Neena Kanwar ◽  
Jumi Yi ◽  
Claudia R. Morris ◽  
Jennifer Dien Bard ◽  
...  

Abstract Background Fever is a common symptom in children presenting to the Emergency Department (ED). We aimed to describe the epidemiology of systemic viral infections and their predictive values for excluding serious bacterial infections (SBIs), including bacteremia, meningitis and urinary tract infections (UTIs) in children presenting to the ED with suspected systemic infections. Methods We enrolled children who presented to the ED with suspected systemic infections who had blood cultures obtained at seven healthcare facilities. Whole blood specimens were analyzed by an experimental multiplexed PCR test for 7 viruses. Demographic and laboratory results were abstracted. Results Of the 1114 subjects enrolled, 245 viruses were detected in 224 (20.1%) subjects. Bacteremia, meningitis and UTI frequency in viral bloodstream-positive patients was 1.3, 0 and 10.1% compared to 2.9, 1.3 and 9.7% in viral bloodstream-negative patients respectively. Although viral bloodstream detections had a high negative predictive value for bacteremia or meningitis (NPV = 98.7%), the frequency of UTIs among these subjects remained appreciable (9/89, 10.1%) (NPV = 89.9%). Screening urinalyses were positive for leukocyte esterase in 8/9 (88.9%) of these subjects, improving the ability to distinguish UTI. Conclusions Viral bloodstream detections were common in children presenting to the ED with suspected systemic infections. Although overall frequencies of SBIs among subjects with and without viral bloodstream detections did not differ significantly, combining whole blood viral testing with urinalysis provided high NPV for excluding SBI.


2006 ◽  
Vol 75 (3) ◽  
pp. 1493-1501 ◽  
Author(s):  
Chantal Fradin ◽  
Abigail L. Mavor ◽  
Günther Weindl ◽  
Martin Schaller ◽  
Karin Hanke ◽  
...  

ABSTRACT Candida albicans is a polymorphic opportunistic fungus that can cause life-threatening systemic infections following hematogenous dissemination in patients susceptible to nosocomial infection. Neutrophils form part of the innate immune response, which is the first line of defense against microbes and is particularly important in C. albicans infections. To compare the transcriptional response of leukocytes exposed to C. albicans, we investigated the expression of key cytokine genes in polymorphonuclear and mononuclear leukocytes after incubation with C. albicans for 1 h. Isolated mononuclear cells expressed high levels of genes encoding proinflammatory signaling molecules, whereas neutrophils exhibited much lower levels, similar to those observed in whole blood. The global transcriptional profile of neutrophils was examined by using an immunology-biased human microarray to determine whether different morphological forms or the viability of C. albicans altered the transcriptome. Hyphal cells appeared to have the broadest effect, although the most strongly induced genes were regulated independently of morphology or viability. These genes were involved in proinflammatory cell-cell signaling, cell signal transduction, and cell growth. Generally, genes encoding known components of neutrophil granules showed no upregulation at this time point; however, lactoferrin, a well-known candidacidal peptide, was secreted by neutrophils. Addition to inhibitors of RNA or protein de novo synthesis did not influence the killing activity within 30 min. These results support the general notion that neutrophils do not require gene transcription to mount an immediate and direct attack against microbes. However, neutrophils exposed to C. albicans express genes involved in communication with other immune cells.


Sign in / Sign up

Export Citation Format

Share Document