Edible Ferns in India and Their Medicinal Uses: A Review

Author(s):  
Priti Giri ◽  
Prem L. Uniyal
Keyword(s):  
2017 ◽  
Vol 23 (2) ◽  
Author(s):  
JAMIL AHMED KHAN ◽  
RAJINDER PAUL

Poonch district of Jammu and Kashmir is a reservoir of enormous natural resources including the wealth of medicinal plants. The present paper deals with 12 medicinal plant species belonging to 8 genera of angiosperms used on pneumonia in cattle such as cows, sheep, goats and buffaloes in different areas of Poonch district. Due to poverty and nonavailability of modern health care facilities, the indigenous people of the area partially or fully depend on surrounding medicinal plants to cure the different ailments of their cattles. Further research on modern scientific line is necessary to improve their efficacy, safety and validation of the traditional knowledge.


2019 ◽  
Vol 20 (5) ◽  
pp. 376-389 ◽  
Author(s):  
Sonali Mishra ◽  
Nupur Srivastava ◽  
Velusamy Sundaresan ◽  
Karuna Shanker

Background: Decalepis arayalpathra (J. Joseph and V. Chandras.) Venter is used primarily for nutrition besides its therapeutic values. Traditional preparations/formulations from its tuber are used as a vitalizer and blood purifier drink. The folklore medicinal uses cover inflammation, cough, wound healing, antipyretic, and digestive system management. A comprehensive review of the current understanding of the plant is required due to emerging concerns over its safety and efficacy. Objective: The systematic collection of the authentic information from different sources with the critical discussion is summarised in order to address various issues related to botanical identity, therapeutic medicine, nutritional usage, phytochemical, and pharmacological potentials of the D. arayalpathra. Current use of traditional systems of medicine can be used to expand future research opportunities. Materials and Methods: Available scripted information was collected manually, from peered review research papers and international databases viz. Science Direct, Google Scholar, SciFinder, Scopus, etc. The unpublished resources which were not available in database were collected through the classical books of ‘Ayurveda’ and ‘Siddha’ published in regional languages. The information from books, Ph.D. and MSc dissertations, conference papers and government reports were also collected. We thoroughly screened the scripted information of classical books, titles, abstracts, reports, and full-texts of the journals to establish the reliability of the content. Results: Tuber bearing vanilla like signature flavor is due to the presence of 2-hydroxy-4-methoxybenzaldehyde (HMB). Among five other species, Decalepis arayalpathra (DA) has come under the ‘critically endangered’ category, due to over-exploitation for traditional, therapeutic and cool drink use. The experimental studies proved that it possesses gastro-protective, anti-tumor, and antiinflammatory activities. Some efforts were also made to develop better therapeutics by logical modifications in 2-Hydroxy-4-methoxy-benzaldehyde, which is a major secondary metabolite of D. arayalpathra. ‘Amruthapala’ offers the enormous opportunity to develop herbal drink with health benefits like gastro-protective, anti-oxidant and anti-inflammatory actions. Results: The plant has the potential to generate the investigational new lead (IND) based on its major secondary metabolite i.e. 2-Hydroxy-4-methoxy-benzaldehyde. The present mini-review summarizes the current knowledge on Decalepis arayalpathra, covering its phytochemical diversity, biological potentials, strategies for its conservation, and intellectual property rights (IPR) status. Chemical Compounds: 2-hydroxy-4-methoxybenzaldehyde (Pubchem CID: 69600), α-amyrin acetate (Pubchem CID: 293754), Magnificol (Pubchem CID: 44575983), β-sitosterol (Pubchem CID: 222284), 3-hydroxy-p-anisaldehyde (Pubchem CID: 12127), Naringenin (Pubchem CID: 932), Kaempferol (Pubchem CID: 5280863), Aromadendrin (Pubchem CID: 122850), 3-methoxy-1,2-cyclopentanedione (Pubchem CID: 61209), p-anisaldehyde (Pubchem CID: 31244), Menthyl acetate (Pubchem CID: 27867), Benzaldehyde (Pubchem CID: 240), p-cymene (Pubchem CID: 7463), Salicylaldehyde (Pubchem CID: 6998), 10-epi-γ-eudesmol (Pubchem CID: 6430754), α -amyrin (Pubchem CID: 225688), 3-hydroxy-4-methoxy benzaldehyde (Pubchem CID: 12127).


Author(s):  
Vijay Kumar

: Mimosa pudica Linn is an integrated part of Traditional Medicines Systems of India, China, Africa, Korea and America. It has been used from centuries in traditional medicines to cure different diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, and dyspepsia. It is an important ingredient of wide class of herbal formulations. To assess the scientific evidence for therapeutic potential of Mimosa pudica Linn and to identify the gaps for future research. The available information on the ethno-medicinal uses, phytochemistry, pharmacology and toxicology of Mimosa pudica Linn was collected via a library and electronic searches in Sci-Finder, Pub-Med, Science Direct, Google Scholar for the period, 1990 to 2020. In traditional medicinal systems, variety of ethno-medicinal applications of Mimosa pudica Linn has been noticed. Phytochemical investigation has resulted in identification of 40 well known chemical constituents, among which alkaloids, phenols and flavionoids are the predominant groups. The crude extracts and isolates have exhibited a wide spectrum of in vitro and in vivo pharmacological activities including anti-cancer, anti-inflammation, osteoporosis, neurological disorders, hypertension etc.. To quantify the Mimosa pudica Linn and its formulations, analytical techniques like HPLC and HPTLC has shown dominancy with good range of recovery and detection limit. Mimosa pudica Linn is the well-known herb since an ancient time. The pharmacological results supported some of the applications of Mimosa pudica Linn in traditional medicine systems. Perhaps, the predominance of alkaloids, phenols and flavionoids are responsible for the pharmacological activities the crude extracts and isolates of Mimosa pudica Linn. Further, there is need to isolate and evaluate the active chemical constituents of Mimosa pudica Linn having significant medicinal values. In future, it is important to study the exact mechanism associated with the phytochemicals of Mimosa pudica Linn especially on anti-cancer activities. Notably, toxicity studies on Mimosa pudica Linn are limited which are to be explored in future for the safe application of Mimosa pudica Linn and its formulations.


2020 ◽  
Vol 16 (5) ◽  
pp. 557-567
Author(s):  
Aparoop Das ◽  
Anshul Shakya ◽  
Surajit Kumar Ghosh ◽  
Udaya P. Singh ◽  
Hans R. Bhat

Background: Plants of the genus Inula are perennial herbs of the family Asteraceae. This genus includes more than 100 species, widely distributed throughout Europe, Africa and Asia including India. Many of them are indicated in traditional medicine, e.g., in Ayurveda. This review explores chemical constituents, medicinal uses and pharmacological actions of Inula species. Methods: Major databases and research and review articles retrieved through Scopus, Web of Science, and Medline were consulted to obtain information on the pharmacological activities of the genus Inula published from 1994 to 2017. Results: Inula species are used either alone or as an important ingredient of various formulations to cure dysfunctions of the cardiovascular system, respiratory system, urinary system, central nervous system and digestive system, and for the treatment of asthma, diabetes, cancers, skin disorders, hepatic disease, fungal and bacterial infections. A range of phytochemicals including alkaloids, essential and volatile oils, flavonoids, terpenes, and lactones has been isolated from herbs of the genus Inula, which might possibly explain traditional uses of these plants. Conclusion: The present review is focused on chemical constituents, medicinal uses and pharmacological actions of Inula species and provides valuable insight into its medicinal potential.


2020 ◽  
Vol 16 (8) ◽  
pp. 1044-1057 ◽  
Author(s):  
Hamdoon A. Mohammed

Background: Suaeda is a halophytic genus belonging to the Amaranthaceae family and can survive in the high salted marsh areas of the world. Suaeda plants can biosynthesize natural substances with powerful antioxidant activity and are considered as a renewable source of energy, food, and edible oil for a larger number of populations living in the harsh environment with high salinity and drought conditions. These plants also meet folk and alternative medicines' needs. Methods: The review encompasses available scientific literature related to folk medicinal uses of Suaeda plants, their nutritional values, and chemical constituents. In addition, the biological trials applied for the Suaeda plants are also part of the review. The review covers the researches from major science literature search engines and other sites representing scientific literature, i.e., Scifinder, Google Scholar, PubMed, ScienceDirect, Scopus, and Google. The searches were programmed on the advance options available in the search engines and are latest up to November 2019. The searches were exhaustive and rechecked for accuracy. Conclusion: The study summarizes the uses of Suaeda plants as a remedy for various ailments due to their contents from the polyphenols and flavonoids. The comparatively large amounts of fixed oils, minerals, and vitamins in Suaeda plants have also made them potential renewable sources for foods.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ali Mahmoud Muddathir ◽  
Ebtihal Abdalla M. Mohieldin ◽  
Tohru Mitsunaga

Abstract Background Dental caries and periodontal disease are the most common chronic infectious oral diseases in the world. Acacia nilotica was commonly known in Sudan as Garad or Sunt has a wide range of medicinal uses. In the present study, antibacterial activity of oral bacteria (Streptococcus sobrinus and Porphyromonas gingivalis), inhibitory activity against glucosyltransferase (GTF) enzyme and antioxidant activity were assayed for methanolic crude extract of A. nilotica bark and its fractions. Methods Methanoilc crude extract of A. nilotica bark was applied to a Sephadex LH-20 column and eluted with methanol, aqueous methanol, and finally aqueous acetone to obtain four fractions (Fr1- Fr4). Furthermore, the crude extract and fractions were subjected to analytical high performance liquid chromatography (HPLC). The crude extract and its fractions were assayed for antibacterial activity against S. sobrinus and P. gingivalis using a microplate dilution assay method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), as well as GTF inhibition and antioxidant activity using ABTS radical scavenging method. Results Fractions (Fr1 and Fr2) exhibited MIC values of 0.3 mg/ml against the P. gingivalis. Additionally, Fr2 displayed MBC value of 1 mg/ml against two types of bacteria. Fr4 showed an especially potent GTF inhibitory activity with IC50 value of 3.9 μg/ml. Fr1 displayed the best antioxidant activity with IC50 value of 1.8 μg/ml. The main compound in Fr1 was identified as gallic acid, and Fr2 was mostly a mixture of gallic acid and methyl gallate. Conclusions The results obtained in this study provide some scientific rationale and justify the use of this plant for the treatment of dental diseases in traditional medicine. A. nilotica bark, besides their antibacterial potentiality and GTF inhibitory activity, it may be used as adjuvant antioxidants in mouthwashes. Further studies in the future are required to identify the rest of the active compounds.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Shixin Deng ◽  
Brett J. West ◽  
'Afa K. Palu ◽  
C. Jarakae Jensen

Noni blossoms have a long history of medicinal uses in tropical areas. This study was conducted to investigate the major phytochemical components, toxicological properties, and antioxidant activity of noni blossoms. An HPLC-PDA method was developed and validated for the identification and quantification of major components. The major phytochemicals were iridoid glycosides, deacetylasperulosidic acid and asperulosidic acid, and flavonoids, quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside and kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, each present at 3.764, 3.576, 1.513, and 3.096 mg/g, respectively. The aqueous extract of noni blossoms, at 500 μg/mL, exhibited greater antioxidant activity in the 2,2-diphenylpicrylhydrazyl radical scavenging assay than green tea (88.11 ± 0.01% versus 76.60 ± 0.05%). A primary DNA damage test in E. coli PQ37 (SOS-chromotest) and a twenty-four hour brine shrimp toxicity test did not reveal any genotoxic or cytotoxic activity. These results provide a useful reference for the identification of noni blossoms as well as preliminary evaluation of safety and efficacy. Further evaluation of the potential applications of noni blossoms is warranted.


2021 ◽  
Vol 22 (14) ◽  
pp. 7382
Author(s):  
Nancy Chiang ◽  
Shahla Ray ◽  
Jade Lomax ◽  
Sydney Goertzen ◽  
Slavko Komarnytsky ◽  
...  

Culinary sage (Salvia officinalis L.) is a common spice plant in the mint family (Lamiaceae) well known for its distinctive culinary and traditional medicinal uses. Sage tea has been used traditionally as a brain-enhancing tonic and extracts from sage have been reported to have both cognitive and memory enhancing effects. Brain-derived neurotrophic factor (BDNF) is an endogenous signaling molecule involved in cognition and memory function. In this study, activity-guided fractionation employing preparative reverse-phase high performance liquid chromatography (RP-HPLC) of culinary sage extracts led to the discovery of benzyl 6-O-β-D-apiofuranosyl-β-D-glucoside (B6AG) as a natural product that upregulates transcription of neurotrophic factors in C6 glioma cells. Purified B6AG showed a moderate dose response, with upregulation of BDNF and with EC50 at 6.46 μM. To better understand the natural variation in culinary sage, B6AG was quantitated in the leaves of several commercial varieties by liquid chromatography-mass spectrometry (LC-MS). The level of B6AG in dried culinary sage was found to range from 334 ± 14 to 698 ± 65 μg/g. This study provided a foundation for future investigations, including quantitative inquiries on the distribution of B6AG within the different plant organs, explorations in optimizing post-harvest practices, and aid in the development of sage varieties with elevated levels of B6AG.


Sign in / Sign up

Export Citation Format

Share Document