scholarly journals Dynamic Characteristics of Deep Dolomite Under One-Dimensional Static and Dynamic Loads

2019 ◽  
Vol 101 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Jianguo Wang ◽  
Yang Liu ◽  
Kegang Li

AbstractThe failure characteristics of rock subjected to impact disturbance under one-dimensional static axial compression are helpful for studying the problems of pillar instability and rock burst in deep, high geostress surrounding rock under blasting disturbances. Improved split Hopkinson pressure bar equipment was used for one-dimensional dynamic–static combined impact tests of deep-seated dolomite specimens under axial compression levels of 0, 12, 24, and 36 MPa. The experimental results demonstrate that the dolomite specimens exhibit strong brittleness. The dynamic strength always maintains a strong positive correlation with the strain rate when the axial compression is fixed; when the strain rate is close, the dynamic elasticity modulus and peak strength of the specimens first increase and then decrease with the increase in axial compression, and the peak value appears at 24 MPa. The impact resistance of specimens can be enhanced when the axial compression is 12 or 24 MPa, but when it increases to 36 MPa, the damage inside the specimen begins to cause damage to the dynamic rock strength. Prior to the rock macroscopic failure, the axial static load changes the rock structure state, and it can store strain energy or cause irreversible damage.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Shiming Wang ◽  
Yunsi Liu ◽  
Jian Zhou ◽  
Qiuhong Wu ◽  
Shuyi Ma ◽  
...  

Research on the dynamic compressive characteristics of sandstone under radial gradient stress and confining pressure is conducive to understanding the characteristics of the surrounding rock, especially in an excavation operation for an underground mine roadway and tunnel. The present work aimed at studying the effects of radial gradient stress and confining pressure on the impact of compression of sandstone using a large-diameter split Hopkinson pressure bar. The results showed that the dynamic strength of sandstone under radial gradient stress increased with strain rate following a power function, and the dynamic strength of the sandstone under radial gradient stress was lower and more sensitive to strain rate. The increase in strain at peak stress (peak strain) was linearly correlated with the strain rate under different confining pressures. The sensitivity of the peak strain to confining pressure was lower for the sandstone with a hole, while the values of the elastic modulus were decreased. However, further increasing the stain rate would lead to an increase in the elastic modulus. Also, the ductility of the sandstone with a hole tested in this study was found to improve more significantly. Finally, with an increase in the incident energy, the absorbed energy per unit volume would increase, but would not be affected obviously by the radial gradient stress.


2003 ◽  
Vol 125 (3) ◽  
pp. 294-301 ◽  
Author(s):  
B. Song ◽  
W. Chen

Dynamic compressive stress-strain curves at various strain rates of an Ethylene-Propylene-Diene Monomer Copolymer (EPDM) rubber have been determined with a modified split Hopkinson pressure bar (SHPB). The use of a pulse-shaping technique ensures that the specimen deforms at a nearly constant strain rate under dynamically equilibrated stress. The validity of the experiments was monitored by a high-speed digital camera for specimen edge deformation, and by piezoelectric force transducers for dynamic stress equilibrium. The resulting dynamic stress-strain curves for the EPDM indicate that the material is sensitive to strain rates and that the strain-rate sensitivity depends on the value of strain. Based on a strain energy function theory, a one-dimensional dynamic constitutive equation for this rubber was modified to describe the high strain-rate experimental results within the ranges of strain and strain rates presented in this paper.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhihang Hu ◽  
Yuying Ning ◽  
Jiuyang Zhang ◽  
Jianyu Zhao

Under impact load, the dynamic mechanical properties of rock are complex and changeable. The Split Hopkinson Pressure Bar (SHPB) system was used to change the impact load to carry out different strain rate loading tests on granite with different aspect ratios, and to analyze the influence of strain rate and aspect ratio on the dynamic energy consumption of granite crushing. The results show that at an impact velocity of 14 m/s, the granite with an aspect ratio of 1.4 appears to be strip-shaped fragments after being broken; the granite with an aspect ratio of 1.0 uniform square fragments after being broken; the granite with an aspect ratio of 0.6 appears to be a large number of flat fragments after being broken. When the load strain rate of the granite with an aspect ratio of 0.6 increases from 50 s-1 to 150 s-1, the energy-time density index increases significantly; when the load strain rate exceeds 150 s-1, the energy-time density index decreases. When the strain rate of granite with an aspect ratio of 1.0 exceeds 80 s-1, the energy-time density increases significantly. When the strain rate of the granite with an aspect ratio of 1.4 exceeds 60 s-1, the rate of increase of the energy-time density of the rock increases significantly.


2020 ◽  
Vol 999 ◽  
pp. 83-90
Author(s):  
Xiao Ju Gao ◽  
Hasigaowa ◽  
Meng Yong Sun ◽  
Cheng Dong Liao ◽  
Wei Ping Huang ◽  
...  

SiC/B4C composite was obtained using the reaction sintering method with Si infiltration, which exhibited excellent mechanical properties. The dynamic compressive response was investigated using a Split Hopkinson pressure bar at high strain rates ranging from 0.4×103 to 1.2×103 s-1. The results show that the dynamic strength of the SiC/B4C composite obtains a peak value at a strain rate of 1000/s, while its strain increased continuously with increasing strain rate. The dynamic loading mode of SiC/B4C composite exhibited three deformation regions, including an inelastic deformation region, rapid loading region and failure region. The dynamic failure mode of SiC/B4C composite depended upon the strain rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Wen Wang ◽  
Heng Wang ◽  
Dongyin Li ◽  
Huamin Li ◽  
Zhumeng Liu

Rock bursts occur frequently in coal mines, and the mechanical properties of saturated coal specimens under coupled static-dynamic loading need to be studied in detail. Comparative tests of coal specimens having different water content under static and static-dynamic loading are conducted using the split Hopkinson pressure bar (SHPB) and RMT-150C test systems. The results demonstrate that the natural specimen strength is greater than that of seven-day (7D) saturated specimens under both uniaxial compression and triaxial static compression loading; however, the dynamic strength of 7D saturated specimens is lower than that of natural specimens under one-dimensional static-dynamic loading. The particle size of the 7D saturated specimens is relatively small under uniaxial static compression and one-dimensional static-dynamic loading, and the specimen particle sizes before and after static triaxial loading tests and three-dimensional static-dynamic loading tests do not exhibit an obvious difference.


2016 ◽  
Vol 715 ◽  
pp. 159-164 ◽  
Author(s):  
Kohei Tateyama ◽  
Hiroyuki Yamada ◽  
Nagahisa Ogasawara

The purpose of this study is to elucidate the effect of foam structure on the impact compressive properties of foamed polyethylene film. Three types of foamed PE film were prepared, which have different foam structure: base type, spheral type and dense type. A quasi-static test was performed using a universal testing machine at the strain rate of 10-3~10-1s-1. Impact tests were carried out using a drop-weight testing machine at the strain rate of 101~102s-1 and using a split Hopkinson pressure bar method at the strain rate of approximately 103s-1. It was confirmed that the foamed PE film shows an increase of the flow stress with increasing of the strain rate, regardless of the specimen type. In the spheral type specimen, the elastic response is observed immediately after compression because the cell shape of this specimen has high bending resistance in comparison with the other two specimens. In addition, it is confirmed that the relative density and cell size affects the flow stress in the foamed PE film.


2014 ◽  
Vol 566 ◽  
pp. 134-139 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Ryo Okui ◽  
Nagahisa Ogasawara ◽  
Hidetoshi Kobayashi ◽  
Kinya Ogawa

The compressive properties of foamed polyethylene (PE) film with a closed cell for electronic devices have been investigated. A commercial closed cell foamed PE film with a density of 330 kg/m3 was used. Quasi-static testing was carried out at strain rates of 10−3 to 10−1 s−1. The strain rate of the impact test was approximately 105 s−1 by means of split Hopkinson pressure bar method. Within the set of experiments, the compressive stress increased with the strain rate in both the quasi-static and impact test. In particular, the flow stress increased substantially with the increasing strain rate in the impact deformation. At strains of less than 0.4, the trapped air was locally compressed within the cells, which led to the strain rate dependency of strength in the quasi-static test and the impact test.


2008 ◽  
Vol 13-14 ◽  
pp. 195-201 ◽  
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai

The impact compressive failure behaviour of a unidirectional T700/2521 carbon/epoxy composite in three principal material directions is investigated in the conventional split Hopkinson pressure bar. Two different types of specimens with square cross sections are machined from the composite in the plane of the laminate. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine. It is demonstrated that the ultimate compressive strength (or maximum stress) increases slightly, while the ultimate compressive strain (or failure strain) decreases marginally with strain rate in the range of 10-3 to 103/s in all three directions. Dominant failure mechanisms are found to significantly vary with strain rate and loading directions along three principal material axes.


1998 ◽  
Vol 521 ◽  
Author(s):  
J. Lankford ◽  
K. A. Dannemann

ABSTRACTThe behavior of metal foams under rapid loading conditions is assessed. Dynamic loading experiments were conducted in our laboratory using a split Hopkinson pressure bar apparatus and a drop weight tester; strain rates ranged from 45 s−1 to 1200 s−1. The implications of these experiments on open-cell, porous metals, and closed- and open-cell polymer foams are described. It is shown that there are two possible strain-rate dependent contributors to the impact resistance of cellular metals: (i) elastic-plastic resistance of the cellular metal “skeleton,” and (ii) the gas pressure generated by gas flow within distorted open cells. A theoretical basis for these implications is presented.


2011 ◽  
Vol 194-196 ◽  
pp. 1109-1113 ◽  
Author(s):  
Bin Jia ◽  
Zheng Liang Li ◽  
Lu Cheng ◽  
Hua Chuan Yao

An experimental system of high-temperature split Hopkinson pressure bar (SHPB) was developed by combination of the split Hopkinson pressure bar (SHPB) and microwave heating system, then tests of concrete whose temperature changed from room temperature to 650°С and impact velocity from 5m/s to 12m/s were completed. Based on the test results, the dynamic strength of concrete increases with increasing impact velocity whether with high temperature or room temperature, meanwhile the dynamic strength of concrete with high temperature has the strain rate effect, but the effect keeps decreasing with temperature increasing, even at temperature above 500°С , compressive strength will not have strain rate sensitive effect any longer when strain rate surpasses a certain value. In the meantime, the strain rate hardening effect is coupled with high temperature weakening effect, but the latter has greater influence.


Sign in / Sign up

Export Citation Format

Share Document