Micropropagation and embryoid formation from young leaves of Bambusa glaucescens ‘Golden goddess’

Plant Science ◽  
1994 ◽  
Vol 98 (2) ◽  
pp. 199-207 ◽  
Author(s):  
F. Jullien ◽  
K. Tran Thanh Van
Agrotek ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Antonius Suparno ◽  
Opalina Logo ◽  
Dwiana Wasgito Purnomo

Sweet potato serves as a staple food for people in Jayawijaya. Many cultivars of sweet potatoes have been cultivated by Dani tribe in Kurulu as foot for their infant, child and adult as well as feeding especially for pigs. Base on the used of sweet potatoes as food source for infant and child, this study explored 10 different cultivars. As for the leaf morphology, it was indentified that the mature leaves have size around 15 � 18 cm. general outline of the leaf is reniform (40%), 60% have green colour leaf, 50% without leaf lobe, 60% of leaf lobes number is one, 70% of shape of central leaf lobe is toothed. Abazial leaf vein pigmentation have purple (40%), and petiole pigmentation is purple with green near leaf (60%), besides its tuber roots, sweet potatoes are also harvested for its shoots and green young leaves for vegetables.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 461d-461
Author(s):  
Richard L. Bell ◽  
Ralph Scorza ◽  
Chinnathambi Srinivasan

An efficient regeneration/transformation system was developed for `Beurre Bosc' pear. Young leaves were harvested from in vitro shoots proliferated on a medium containing MS basal salts and 5 BAP, 0.5 μM IBA, and 0.6M3. Shoot regeneration was optimized using a modification of the medium of Chevreau and Leblay (1993). Explants were cultured on shoot induction medium contained 10 μM TDZ and 1 μM IBA for 4 weeks in the dark, and then transfered to a similar, but auxinless, regeneration medium until shoots developed, usually after an additional 4 to 8 weeks. Leaf tissues were transformed by co-cultivation for 3 days with Agrobacterium tumefaciens EHA101 carrying a pGA482 plasmid containing NPTII, GUS, and rolC genes, followed by cultivation on SIM containing 300 mg/L timentin. Putative transgenic plants were selected on shoot induction medium containing 80mg/L kanamycin, and multiplied on shoot proliferation medium. Four clones were confirmed as transgenic using the GUS histochemical assay and Southern blots for the NPTII and rolC genes. Plants of each clone have been rooted and successfully transfered to the greenhouse for further analysis of gene expression.


Author(s):  
Guo-qing Song ◽  
Xue Han ◽  
John T. Ryner ◽  
Addie Thompson ◽  
Kan Wang

Abstract Key message Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. Abstract MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12–18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 445-452
Author(s):  
Wei Jin ◽  
Harry T Horner ◽  
Reid G Palmer ◽  
Randy C Shoemaker

Abstract Oligonucleotide primers designed for conserved sequences from coding regions of β-1,3-glucanase genes from different species were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing and cross-hybridization of amplification products indicated that at least 12 classes of β-1,3-glucanase genes exist in the soybean. Members of classes mapped to 34 loci on five different linkage groups using an F2 population of 56 individuals. β-1,3-Glucanase genes are clustered onto regions of five linkage groups. Data suggest that more closely related genes are clustered together on one linkage group or on duplicated regions of linkage groups. Northern blot analyses performed on total RNA from root, stem, leaf, pod, flower bud, and hypocotyl using DNA probes for the different classes of β-1,3-glucanase genes revealed that the mRNA levels of all classes were low in young leaves. SGlu2, SGlu4, SGlu7, and SGlu12 mRNA were highly accumulated in young roots and hypocotyls. SGlu7 mRNA also accumulated in pods and flower buds.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1401
Author(s):  
Hazar Balti ◽  
Mejda Abassi ◽  
Karl-Josef Dietz ◽  
Vijay Kumar

In the face of rising salinity along coastal regions and in irrigated areas, molecular breeding of tolerant crops and reforestation of exposed areas using tolerant woody species is a two-way strategy. Thus, identification of tolerant plants and of existing tolerance mechanisms are of immense value. In the present study, three Eucalyptus ecotypes with potentially differential salt sensitivity were compared. Soil-grown Eucalyptus plants were exposed to 80 and 170 mM NaCl for 30 days. Besides analysing salt effects on ionic/osmotic balance, and hydrolytic enzymes, plants were compared for dynamics of light-induced redox changes in photosynthetic electron transport chain (pETC) components, namely plastocyanin (PC), photosystem I (PSI) and ferredoxin (Fd), parallel to traditional chlorophyll a fluorescence-based PSII-related parameters. Deconvoluted signals for PC and Fd from PSI allowed identification of PC and PSI as the prime salinity-sensitive components of pETC in tested Eucalyptus species. Eucalyptus loxophleba portrayed efficient K+-Na+ balance (60–90% increased K+) along with a more dynamic range of redox changes for pETC components in old leaves. Young leaves in Eucalyptus loxophleba showed robust endomembrane homeostasis, as underlined by an increased response of hydrolytic enzymes at lower salt concentration (~1.7–2.6-fold increase). Findings are discussed in context of salinity dose dependence among different Eucalyptus species.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1207
Author(s):  
Shu-Cheng Duan ◽  
Soon-Jae Kwon ◽  
Seok-Hyun Eom

The leaves and seeds of the faba bean are good sources of L-3,4-dihydroxyphenylalanin (L-dopa), and are usually eaten with thermal cooking methods. However, little information is available on the effect of thermal treatments on their nutritional value. We compared the changes in color, contents of L-dopa, vitamin C (Vc), total phenolics (TP), total flavonoids (TF) and antioxidant activity after dry heating or steaming faba bean leaves and seeds. The young leaves provided higher values of all the estimate factors, regardless of the thermal treatment. Steaming significantly degraded nutritional values of the leaves, but less changed in seeds, whereas dry heat maintained these attributes. The contents of L-dopa, Vc, TP and TF were shown to have strongly positive correlations with antioxidant activity in the leaves, whereas only L-dopa content was positively correlated with antioxidant activity of the seeds. Faba leaves contained relatively high L-dopa which possessed strong antioxidant activity compared to the Vc. As L-dopa is an important contributor to the antioxidant activity of faba leaves and seeds, consuming L-dopa from leaves may provide beneficial effects not only regarding Parkinson’s Disease.


Experiments were recently reported showing that, in young seedlings of Pisum sativum , the complete inhibiting effect which the shoot exerts upon its axillary buds comes entirely or almost entirely from three or four of its developing leave acting together (6). A single developing leaf was found usually to inhibit only partially—that is to say, sufficiently to delay the growth of an axillary bud below it, but not to check it completely. The strength of this partial inhibiting effect was measured by the retardation of the outgrowth of the axillary buds of the first or lowest leaf, as compared with their growth in completely defoliated controls. Comparisons were further made of the inhibiting effects of single young leaves of equal sizes near the apex in seedlings of different ages and heights, and it was found that in very young short seedlings the inhibiting effect was very slight or inappreciable, although in seedlings of a height of about 30 mm. or more (but still possessing well filled cotyledons) the effect was strong.


Sign in / Sign up

Export Citation Format

Share Document