Neuronal degeneration and lipopigment formation in rat sympathetic ganglion after treatment with high-dose guanethidine

1989 ◽  
Vol 102 (2-3) ◽  
pp. 349-354 ◽  
Author(s):  
J. Koistinaho ◽  
A. Hervonen
2003 ◽  
Vol 77 (24) ◽  
pp. 13323-13334 ◽  
Author(s):  
Yang Wang ◽  
Mario Lobigs ◽  
Eva Lee ◽  
Arno Müllbacher

ABSTRACT C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (108 PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (103 PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8+, but not CD4+, T cells. CD8+ T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8+ T-cell-deficient mice infected with 103 PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8+ T cells are involved in both recovery and immunopathology in WNV infection.


2021 ◽  
Vol 337 ◽  
pp. 109379
Author(s):  
Saman Saedi ◽  
Mohammad Reza Jafarzadeh Shirazi ◽  
Ali Niazi ◽  
Ahmad Tahmasebi ◽  
Esmaeil Ebrahimie

2019 ◽  
Vol 90 (e7) ◽  
pp. A18.1-A18
Author(s):  
Allycia MacDonald ◽  
Jason Dyke ◽  
Simon Khangure ◽  
Andrew Kelly

IntroductionApproximately 10% of amyotrophic lateral sclerosis (ALS) cases are inherited, of which 20% are due to mutations in the superoxide dismutase-1 gene (SOD1). MRI abnormalities are not uncommon in ALS, and there have been previous case reports of peripheral nerve enhancement in patients with SOD1 mutations, typically attributed to rapid neuronal degeneration.CaseA 31-year-old previously well Malaysian woman presented with a 3 month history of progressive lower limb weakness, initially involving the right lower limb but progressing to involve the left, requiring the use of a walking aid. Initial examination demonstrated asymmetric upper and lower motor neuron signs in bilateral upper and lower limbs. EMG findings were of a severe pure motor axonal process. CSF examination revealed elevated protein without significant elevation of white cells. MRI brain and spine demonstrated smooth cauda-equina ventral nerve root thickening and enhancement. Treatment with intravenous immunoglobulin and high dose corticosteroid was commenced for a presumed inflammatory process, with no clinical improvement. A cauda-equina nerve root biopsy was performed, demonstrating features consistent with an immune-mediated demyelinating neuropathy. The patient continued to deteriorate, developing flaccid upper limb weakness and facial involvement. Plasma exchange, azathioprine, cyclophosphamide, and rituximab were sequentially administered over the following two months without altering the rate of disease progression. Genetic testing returned a positive SOD1 heterozygous gene mutation, confirming the diagnosis of ALS.ConclusionsWe present a case of SOD1-ALS with atypical features on imaging and histopathology suggesting an underlying demyelinating process, expanding the known clinical spectrum of this mutation.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmed A. Allam ◽  
Salah N. Maodaa ◽  
Rasha Abo-Eleneen ◽  
Jamaan Ajarem

Parsley was used as a probe of the current experiment to prevent the behavioral, morphological and biochemical changes in the newborn brain following the administration of cadmium (Cd) to the pregnant mice. The nonanesthetized pregnant mice were given daily parsley juice (Petroselinum crispum) at doses of 20 mg/kg and 10 mg/kg. Pregnant mothers were given Cd at a dose of 30 mg/kg divided into 3 equal times. The newborns have been divided into 6 groups: Group A, mothers did not take treatment; Groups B and C, mothers were treated with low and high dose of parsley, respectively; Group D, mothers were treated only with Cd (perinatal intoxication); Groups E and F, mothers were treated with Cd doses and protected by low and high doses of parsley, respectively. Light microscopy showed that Cd-induced neuronal degeneration by chromatolysis and pyknosis in the brain regions. The low dose of parsley 10 g/kg/day exhibited significant effects in neutralizing and reducing the deleterious changes due to Cd exposure during pregnancy on the behavioral activities, neurotransmitters, oxidative stress, and brain neurons morphology of the mice newborns.


2022 ◽  
Vol 13 ◽  
Author(s):  
Jinfeng Liu ◽  
Larry Baum ◽  
Shasha Yu ◽  
Youhong Lin ◽  
Guoying Xiong ◽  
...  

In Alzheimer's disease (AD), amyloid β deposition-induced hippocampal synaptic dysfunction generally begins prior to neuronal degeneration and memory impairment. Lycium barbarum extracts (LBE) have been demonstrated to be neuroprotective in various animal models of neurodegeneration. In this study, we aimed to investigate the effects of LBE on the synapse loss in AD through the avenue of the retina in a triple transgenic mouse model of AD (3xTg-AD). We fed 3xTg-AD mice with low (200 mg/kg) or high (2 g/kg) dose hydrophilic LBE daily for 2 months from the starting age of 4- or 6-month-old. For those started at 6 month age, at 1 month (though not 2 months) after starting treatment, mice given high dose LBE showed a significant increase of a wave and b wave in scotopic ERG. After 2 months of treatment with high dose LBE, calpain-2, calpain-5, and the oxidative RNA marker 8-OHG were downregulated, and presynaptic densities in the inner plexiform layer but not the outer plexiform layer of the retina were significantly increased, suggesting the presynaptic structure of retina was preserved. Our results indicate that LBE feeding may preserve synapse stability in the retina of 3xTg-AD mice, probably by decreasing both oxidative stress and intracellular calcium influx. Thus, LBE might have potential as a neuroprotectant for AD through synapse preservation.


Author(s):  
M. Isaacson ◽  
M.L. Collins ◽  
M. Listvan

Over the past five years it has become evident that radiation damage provides the fundamental limit to the study of blomolecular structure by electron microscopy. In some special cases structural determinations at very low doses can be achieved through superposition techniques to study periodic (Unwin & Henderson, 1975) and nonperiodic (Saxton & Frank, 1977) specimens. In addition, protection methods such as glucose embedding (Unwin & Henderson, 1975) and maintenance of specimen hydration at low temperatures (Taylor & Glaeser, 1976) have also shown promise. Despite these successes, the basic nature of radiation damage in the electron microscope is far from clear. In general we cannot predict exactly how different structures will behave during electron Irradiation at high dose rates. Moreover, with the rapid rise of analytical electron microscopy over the last few years, nvicroscopists are becoming concerned with questions of compositional as well as structural integrity. It is important to measure changes in elemental composition arising from atom migration in or loss from the specimen as a result of electron bombardment.


Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Author(s):  
T. L. Benning ◽  
P. Ingram ◽  
J. D. Shelburne

Two benzofuran derivatives, chlorpromazine and amiodarone, are known to produce inclusion bodies in human tissues. Prolonged high dose chlorpromazine therapy causes hyperpigmentation of the skin with electron-dense inclusion bodies present in dermal histiocytes and endothelial cells ultrastructurally. The nature of the deposits is not known although a drug-melanin complex has been hypothesized. Amiodarone may also cause cutaneous hyperpigmentation and lamellar lysosomal inclusion bodies have been demonstrated within the cells of multiple organ systems. These lamellar bodies are believed to be the product of an amiodarone-induced phospholipid storage disorder. We performed transmission electron microscopy (TEM) and energy dispersive x-ray microanalysis (EDXA) on tissue samples from patients treated with these drugs, attempting to detect the sulfur atom of chlorpromazine and the iodine atom of amiodarone within their respective inclusion bodies.A skin biopsy from a patient with hyperpigmentation due to prolonged chlorpromazine therapy was fixed in 4% glutaraldehyde and processed without osmium tetroxide or en bloc uranyl acetate for Epon embedding.


Author(s):  
G.A. Miranda ◽  
M.A. Arroyo ◽  
C.A. Lucio ◽  
M. Mongeotti ◽  
S.S. Poolsawat

Exposure to drugs and toxic chemicals, during late pregnancy, is a common occurrence in childbearing women. Some studies have reported that more than 90% of pregnant women use at least 1 prescription; of this, 60% used more than one. Another study indicated that 80% of the consumed drugs were not prescribed, and of this figure, 95% were “over-the-counter” drugs. Acetaminophen, the safest of all over-the-counter drugs, has been reported to induce fetal liver necrosis in man and animals and to have abortifacient and embryocidal action in mice. This study examines the degree to which acetaminophen affects the neonatal liver and kidney, when a fatty diet is simultaneously fed to the mother during late pregnancy.Timed Swiss Webster female mice were gavaged during late pregnancy (days 16-19) with fat suspended acetaminophen at a high dose, HD = 84.50 mg/kg, and a low dose, LD = 42.25 mg/kg; a control group received fat alone.


Sign in / Sign up

Export Citation Format

Share Document