Junctionless SOI FinFET with Advanced Spacer Techniques for Sub-3 nm Technology Nodes

Author(s):  
V. Bharath Sreenivasulu ◽  
Vadthiya Narendar
Keyword(s):  
Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Ranganathan Gopinath ◽  
Ravikumar Venkat Krishnan ◽  
Lua Winson ◽  
Phoa Angeline ◽  
Jin Jie

Abstract Dynamic Photon Emission Microscopy (D-PEM) is an established technique for isolating short and open failures, where photons emitted by transistors are collected by sensitive infra-red detectors while the device under test is electrically exercised with automated test equipment (ATE). Common tests, such as scan, use patterns that are generated through Automatic Test Pattern Generator (ATPG) in compressed mode. When these patterns are looped for D-PEM, it results in indeterministic states within cells during the load or unload sequences, making interpretation of emission challenging. Moreover, photons are emitted with lower probability and lesser energies for smaller technology nodes such as the FinFET. In this paper, we will discuss executing scan tests in manners that can be used to bring out emission which did not show up in conventional test loops.


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
Ramya Yeluri ◽  
Ravishankar Thirugnanasambandam ◽  
Cameron Wagner ◽  
Jonathan Urtecho ◽  
Jan M. Neirynck

Abstract Laser voltage probing (LVP) has been extensively used for fault isolation over the last decade; however fault isolation in practice primarily relies on good-to-bad comparisons. In the case of complex logic failures at advanced technology nodes, understanding the components of the measured data can improve accuracy and speed of fault isolation. This work demonstrates the use of second harmonic and thermal effects of LVP to improve fault isolation with specific examples. In the first case, second harmonic frequency is used to identify duty cycle degradation. Monitoring the relative amplitude of the second harmonic helps identify minute deviations in the duty cycle with a scan over a region, as opposed to collecting multiple high resolution waveforms at each node. This can be used to identify timing degradation such as signal slope variation as well. In the second example, identifying abnormal data at the failing device as temperature dependent effect helps refine the fault isolation further.


Author(s):  
P. Larré ◽  
H. Tupin ◽  
C. Charles ◽  
R.H. Newton ◽  
A. Reverdy

Abstract As technology nodes continue to shrink, resistive opens have become increasingly difficult to detect using conventional methods such as AVC and PVC. The failure isolation method, Electron Beam Absorbed Current (EBAC) Imaging has recently become the preferred method in failure analysis labs for fast and highly accurate detection of resistive opens and shorts on a number of structures. This paper presents a case study using a two nanoprobe EBAC technique on a 28nm node test structure. This technique pinpointed the fail and allowed direct TEM lamella.


Silicon ◽  
2021 ◽  
Author(s):  
Satish K. Das ◽  
Umakanta Nanda ◽  
Sudhansu M. Biswal ◽  
Chandan Kumar Pandey ◽  
Lalat Indu Giri

2006 ◽  
Vol 912 ◽  
Author(s):  
Justin J Hamilton ◽  
Erik JH Collart ◽  
Benjamin Colombeau ◽  
Massimo Bersani ◽  
Damiano Giubertoni ◽  
...  

AbstractFormation of highly activated, ultra-shallow and abrupt profiles is a key requirement for the next generations of CMOS devices, particularly for source-drain extensions. For p-type dopant implants (boron), a promising method of increasing junction abruptness is to use Ge preamorphizing implants prior to ultra-low energy B implantation and solid-phase epitaxy regrowth to re-crystallize the amorphous Si. However, for future technology nodes, new issues arise when bulk silicon is supplanted by silicon-on-insulator (SOI). Previous results have shown that the buried Si/SiO2 interface can improve dopant activation, but the effect depends on the detailed preamorphization conditions and further optimization is required. In this paper a range of B doses and Ge energies have been chosen in order to situate the end-of-range (EOR) defect band at various distances from the back interface of the active silicon film (the interface with the buried oxide), in order to explore and optimize further the effect of the interface on dopant behavior. Electrical and structural properties were measured by Hall Effect and SIMS techniques. The results show that the boron deactivates less in SOI material than in bulk silicon, and crucially, that the effect increases as the distance from the EOR defect band to the back interface is decreased. For the closest distances, an increase in junction steepness is also observed, even though the B is located close to the top surface, and thus far from the back interface. The position of the EOR defect band shows the strongest influence for lower B doses.


Sign in / Sign up

Export Citation Format

Share Document