scholarly journals Accuracy and mechanical properties of orthodontic models printed 3-dimensionally from calcium sulfate before and after various postprinting treatments

2016 ◽  
Vol 150 (6) ◽  
pp. 1056-1062 ◽  
Author(s):  
Austin D. Ledingham ◽  
Jeryl D. English ◽  
Sercan Akyalcin ◽  
Benjamin E. Cozad ◽  
Joe C. Ontiveros ◽  
...  
2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 567
Author(s):  
Hong Yang ◽  
Mingyu Gao ◽  
Jinxin Wang ◽  
Hongbo Mu ◽  
Dawei Qi

In the absence of high-quality hardwood timber resources, we have gradually turned our attention from natural forests to planted fast-growing forests. However, fast-growing tree timber in general has defects such as low wood density, loose texture, and poor mechanical properties. Therefore, improving the performance of wood through efficient and rapid technological processes and increasing the utilization of inferior wood is a good way to extend the use of wood. Densification of wood increases the strength of low-density wood and extends the range of applications for wood and wood-derived products. In this paper, the effects of ultrasonic and vacuum pretreatment on the properties of high-performance wood were explored by combining sonication, vacuum impregnation, chemical softening, and thermomechanical treatments to densify the wood; then, the changes in the chemical composition, microstructure, and mechanical properties of poplar wood before and after treatment were analyzed comparatively by FT-IR, XRD, SEM, and mechanical tests. The results showed that with ultrasonic pretreatment and vacuum impregnation, the compression ratio of high-performance wood reached its highest level and the MOR and MOE reached their maximums. With the help of this method, fast-growing softwoods can be easily prepared into dense wood materials, and it is hoped that this new material can be applied in the fields of construction, aviation, and automobile manufacturing.


2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


Author(s):  
Hidenori Shitamoto ◽  
Nobuyuki Hisamune

There are several methods currently being used to install offshore oil and gas pipelines. The reel-lay process is fast and one of the most effective offshore pipeline installation methods for seamless, ERW, and UOE line pipes with outside diameters of 18 inches or less. In the case of the reel-laying method, line pipes are subjected to plastic deformation multiplication during reel-laying. It is thus important to understand the change of the mechanical properties of line pipes before and after reel-laying. Therefore, full-scale reeling (FSR) simulations and small-scale reeling (SSR) simulations are applied as evaluation tests for reel-laying. In this study, FSR simulations were performed to investigate the effect of cyclic deformation on the mechanical properties of weldable 13Cr seamless line pipes. Furthermore, SSR simulations were performed to compare the results obtained by FSR simulations.


2015 ◽  
Vol 662 ◽  
pp. 115-118 ◽  
Author(s):  
Zdeněk Česánek ◽  
Jan Schubert ◽  
Šárka Houdková ◽  
Olga Bláhová ◽  
Michaela Prantnerová

Coating properties determine its behavior in operation. The simulation of future operational conditions is therefore the best quality test. The evaluation during operation is usually not possible to perform, and the coatings are therefore frequently characterized by their physical or mechanical properties. This text deals with the high temperature corrosion of HVOF sprayed Stellite 6 coating and with changes of its local mechanical properties before and after the corrosion testing. High temperature corrosion is defined as a corrosion in the presence of molten salts. In this case, the mixture of salts in composition of 59% Na2(SO)4 with 34.5% KCl and 6.5% NaCl was used. Two exposure temperatures 525 °C and 575 °C were selected and the tests for both temperatures were performed in the time interval of 168h in the autoclave. The coating with salt mixture layer was analyzed using scanning electron microscopy and nanoindentation. The high temperature resistance of Stellite 6 coating was evaluated according to the changes in the coating surface and by the occurrence of individual phases formed on the coating surface during the test. Generally, it can be said that the Stellite 6 alloys deposited by HVOF technology show selective oxidation under the salt film. This fact was also proved in this study. Furthermore, the nanoindentation measurements of Stellite 6 coating were performed before and after the corrosion testing. These measurements were used to evaluate the change of local mechanical coating properties.


2007 ◽  
Vol 336-338 ◽  
pp. 2406-2410
Author(s):  
Yi Wang Bao ◽  
Xiao Xue Bu ◽  
Yan Chun Zhou ◽  
Li Zhong Liu

A relative method, defined as indirect approach to evaluate the material properties via the relationship between unknown properties and a known property, is proposed to estimate some properties that could not be measured by the traditional methods for ceramics. Experiments and theoretic analysis based on the relative method were carried out in this study to estimate the properties in following aspects: determining the temperature dependence of elastic modulus of some machineable ceramics by comparing the deflections; obtaining the modulus and strength of ceramic coatings supported by substrates, from the variation in properties of the rectangular beam samples before and after coating; estimating the residual stresses in tempered glass by comparing the change in the surface strength after strengthening.


2007 ◽  
Vol 12 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Tolga Tuzuner ◽  
Ilyas Uygur ◽  
Irfan Sencan ◽  
Ugur Haklar ◽  
Birhan Oktas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document